Files
asterinas/framework/aster-frame/src/vm/io.rs
Zhang Junyang 141fbeaf0c Optimize the page table implementation using the frame metadata
This PR also refactored the page table cursor, distinguishing `Cursor` from `CursorMut`, and split
a lot of functions to reduce dynamic condition checking.

There are also other sanitizations performed, including refactoring PTE's `is_huge` API to `is_last`,
hardening tracked mapping checks, and making `VmFrame` any size.
2024-06-03 22:16:02 +08:00

387 lines
13 KiB
Rust

// SPDX-License-Identifier: MPL-2.0
use core::marker::PhantomData;
use align_ext::AlignExt;
use inherit_methods_macro::inherit_methods;
use pod::Pod;
use crate::prelude::*;
/// A trait that enables reading/writing data from/to a VM object,
/// e.g., `VmSpace`, `VmFrameVec`, and `VmFrame`.
///
/// # Concurrency
///
/// The methods may be executed by multiple concurrent reader and writer
/// threads. In this case, if the results of concurrent reads or writes
/// desire predictability or atomicity, the users should add extra mechanism
/// for such properties.
pub trait VmIo: Send + Sync {
/// Read a specified number of bytes at a specified offset into a given buffer.
///
/// # No short reads
///
/// On success, the output `buf` must be filled with the requested data
/// completely. If, for any reason, the requested data is only partially
/// available, then the method shall return an error.
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()>;
/// Read a value of a specified type at a specified offset.
fn read_val<T: Pod>(&self, offset: usize) -> Result<T> {
let mut val = T::new_uninit();
self.read_bytes(offset, val.as_bytes_mut())?;
Ok(val)
}
/// Read a slice of a specified type at a specified offset.
///
/// # No short reads
///
/// Similar to `read_bytes`.
fn read_slice<T: Pod>(&self, offset: usize, slice: &mut [T]) -> Result<()> {
let buf = unsafe { core::mem::transmute(slice) };
self.read_bytes(offset, buf)
}
/// Write a specified number of bytes from a given buffer at a specified offset.
///
/// # No short writes
///
/// On success, the input `buf` must be written to the VM object entirely.
/// If, for any reason, the input data can only be written partially,
/// then the method shall return an error.
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()>;
/// Write a value of a specified type at a specified offset.
fn write_val<T: Pod>(&self, offset: usize, new_val: &T) -> Result<()> {
self.write_bytes(offset, new_val.as_bytes())?;
Ok(())
}
/// Write a slice of a specified type at a specified offset.
///
/// # No short write
///
/// Similar to `write_bytes`.
fn write_slice<T: Pod>(&self, offset: usize, slice: &[T]) -> Result<()> {
let buf = unsafe { core::mem::transmute(slice) };
self.write_bytes(offset, buf)
}
/// Write a sequence of values given by an iterator (`iter`) from the specified offset (`offset`).
///
/// The write process stops until the VM object does not have enough remaining space
/// or the iterator returns `None`. If any value is written, the function returns `Ok(nr_written)`,
/// where `nr_written` is the number of the written values.
///
/// The offset of every value written by this method is aligned to the `align`-byte boundary.
/// Naturally, when `align` equals to `0` or `1`, then the argument takes no effect:
/// the values will be written in the most compact way.
///
/// # Example
///
/// Initializing an VM object with the same value can be done easily with `write_values`.
///
/// ```
/// use core::iter::self;
///
/// let _nr_values = vm_obj.write_values(0, iter::repeat(0_u32), 0).unwrap();
/// ```
///
/// # Panic
///
/// This method panics if `align` is greater than two,
/// but not a power of two, in release mode.
fn write_vals<'a, T: Pod + 'a, I: Iterator<Item = &'a T>>(
&self,
offset: usize,
iter: I,
align: usize,
) -> Result<usize> {
let mut nr_written = 0;
let (mut offset, item_size) = if (align >> 1) == 0 {
// align is 0 or 1
(offset, core::mem::size_of::<T>())
} else {
// align is more than 2
(
offset.align_up(align),
core::mem::size_of::<T>().align_up(align),
)
};
for item in iter {
match self.write_val(offset, item) {
Ok(_) => {
offset += item_size;
nr_written += 1;
}
Err(e) => {
if nr_written > 0 {
return Ok(nr_written);
}
return Err(e);
}
}
}
Ok(nr_written)
}
}
macro_rules! impl_vmio_pointer {
($typ:ty,$from:tt) => {
#[inherit_methods(from = $from)]
impl<T: VmIo> VmIo for $typ {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()>;
fn read_val<F: Pod>(&self, offset: usize) -> Result<F>;
fn read_slice<F: Pod>(&self, offset: usize, slice: &mut [F]) -> Result<()>;
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()>;
fn write_val<F: Pod>(&self, offset: usize, new_val: &F) -> Result<()>;
fn write_slice<F: Pod>(&self, offset: usize, slice: &[F]) -> Result<()>;
}
};
}
impl_vmio_pointer!(&T, "(**self)");
impl_vmio_pointer!(&mut T, "(**self)");
impl_vmio_pointer!(Box<T>, "(**self)");
impl_vmio_pointer!(Arc<T>, "(**self)");
/// VmReader is a reader for reading data from a contiguous range of memory.
pub struct VmReader<'a> {
cursor: *const u8,
end: *const u8,
phantom: PhantomData<&'a [u8]>,
}
impl<'a> VmReader<'a> {
/// Constructs a VmReader from a pointer and a length.
///
/// # Safety
///
/// User must ensure the memory from `ptr` to `ptr.add(len)` is contiguous.
/// User must ensure the memory is valid during the entire period of `'a`.
pub const unsafe fn from_raw_parts(ptr: *const u8, len: usize) -> Self {
Self {
cursor: ptr,
end: ptr.add(len),
phantom: PhantomData,
}
}
/// Returns the number of bytes for the remaining data.
pub const fn remain(&self) -> usize {
// SAFETY: the end is equal to or greater than the cursor.
unsafe { self.end.sub_ptr(self.cursor) }
}
/// Returns the cursor pointer, which refers to the address of the next byte to read.
pub const fn cursor(&self) -> *const u8 {
self.cursor
}
/// Returns if it has remaining data to read.
pub const fn has_remain(&self) -> bool {
self.remain() > 0
}
/// Limits the length of remaining data.
///
/// This method ensures the postcondition of `self.remain() <= max_remain`.
pub const fn limit(mut self, max_remain: usize) -> Self {
if max_remain < self.remain() {
// SAFETY: the new end is less than the old end.
unsafe { self.end = self.cursor.add(max_remain) };
}
self
}
/// Skips the first `nbytes` bytes of data.
/// The length of remaining data is decreased accordingly.
///
/// # Panic
///
/// If `nbytes` is greater than `self.remain()`, then the method panics.
pub fn skip(mut self, nbytes: usize) -> Self {
assert!(nbytes <= self.remain());
// SAFETY: the new cursor is less than or equal to the end.
unsafe { self.cursor = self.cursor.add(nbytes) };
self
}
/// Reads all data into the writer until one of the two conditions is met:
/// 1. The reader has no remaining data.
/// 2. The writer has no available space.
///
/// Returns the number of bytes read.
///
/// It pulls the number of bytes data from the reader and
/// fills in the writer with the number of bytes.
pub fn read(&mut self, writer: &mut VmWriter<'_>) -> usize {
let copy_len = self.remain().min(writer.avail());
if copy_len == 0 {
return 0;
}
// SAFETY: the memory range is valid since `copy_len` is the minimum
// of the reader's remaining data and the writer's available space.
unsafe {
core::ptr::copy(self.cursor, writer.cursor, copy_len);
self.cursor = self.cursor.add(copy_len);
writer.cursor = writer.cursor.add(copy_len);
}
copy_len
}
/// Read a value of `Pod` type.
///
/// # Panic
///
/// If the length of the `Pod` type exceeds `self.remain()`, then this method will panic.
pub fn read_val<T: Pod>(&mut self) -> T {
assert!(self.remain() >= core::mem::size_of::<T>());
let mut val = T::new_uninit();
let mut writer = VmWriter::from(val.as_bytes_mut());
let read_len = self.read(&mut writer);
val
}
}
impl<'a> From<&'a [u8]> for VmReader<'a> {
fn from(slice: &'a [u8]) -> Self {
// SAFETY: the range of memory is contiguous and is valid during `'a`.
unsafe { Self::from_raw_parts(slice.as_ptr(), slice.len()) }
}
}
/// VmWriter is a writer for writing data to a contiguous range of memory.
pub struct VmWriter<'a> {
cursor: *mut u8,
end: *mut u8,
phantom: PhantomData<&'a mut [u8]>,
}
impl<'a> VmWriter<'a> {
/// Constructs a VmWriter from a pointer and a length.
///
/// # Safety
///
/// User must ensure the memory from `ptr` to `ptr.add(len)` is contiguous.
/// User must ensure the memory is valid during the entire period of `'a`.
pub const unsafe fn from_raw_parts_mut(ptr: *mut u8, len: usize) -> Self {
Self {
cursor: ptr,
end: ptr.add(len),
phantom: PhantomData,
}
}
/// Returns the number of bytes for the available space.
pub const fn avail(&self) -> usize {
// SAFETY: the end is equal to or greater than the cursor.
unsafe { self.end.sub_ptr(self.cursor) }
}
/// Returns the cursor pointer, which refers to the address of the next byte to write.
pub const fn cursor(&self) -> *mut u8 {
self.cursor
}
/// Returns if it has avaliable space to write.
pub const fn has_avail(&self) -> bool {
self.avail() > 0
}
/// Limits the length of available space.
///
/// This method ensures the postcondition of `self.avail() <= max_avail`.
pub const fn limit(mut self, max_avail: usize) -> Self {
if max_avail < self.avail() {
// SAFETY: the new end is less than the old end.
unsafe { self.end = self.cursor.add(max_avail) };
}
self
}
/// Skips the first `nbytes` bytes of data.
/// The length of available space is decreased accordingly.
///
/// # Panic
///
/// If `nbytes` is greater than `self.avail()`, then the method panics.
pub fn skip(mut self, nbytes: usize) -> Self {
assert!(nbytes <= self.avail());
// SAFETY: the new cursor is less than or equal to the end.
unsafe { self.cursor = self.cursor.add(nbytes) };
self
}
/// Writes data from the reader until one of the two conditions is met:
/// 1. The writer has no available space.
/// 2. The reader has no remaining data.
///
/// Returns the number of bytes written.
///
/// It pulls the number of bytes data from the reader and
/// fills in the writer with the number of bytes.
pub fn write(&mut self, reader: &mut VmReader<'_>) -> usize {
let copy_len = self.avail().min(reader.remain());
if copy_len == 0 {
return 0;
}
// SAFETY: the memory range is valid since `copy_len` is the minimum
// of the reader's remaining data and the writer's available space.
unsafe {
core::ptr::copy(reader.cursor, self.cursor, copy_len);
self.cursor = self.cursor.add(copy_len);
reader.cursor = reader.cursor.add(copy_len);
}
copy_len
}
/// Fills the available space by repeating `value`.
///
/// Returns the number of values written.
///
/// # Panic
///
/// The size of the available space must be a multiple of the size of `value`.
/// Otherwise, the method would panic.
pub fn fill<T: Pod>(&mut self, value: T) -> usize {
let avail = self.avail();
assert!((self.cursor as *mut T).is_aligned());
assert!(avail % core::mem::size_of::<T>() == 0);
let written_num = avail / core::mem::size_of::<T>();
for i in 0..written_num {
// SAFETY: `written_num` is calculated by the avail size and the size of the type `T`,
// hence the `add` operation and `write` operation are valid and will only manipulate
// the memory managed by this writer.
unsafe {
(self.cursor as *mut T).add(i).write(value);
}
}
// The available space has been filled so this cursor can be moved to the end.
self.cursor = self.end;
written_num
}
}
impl<'a> From<&'a mut [u8]> for VmWriter<'a> {
fn from(slice: &'a mut [u8]) -> Self {
// SAFETY: the range of memory is contiguous and is valid during `'a`.
unsafe { Self::from_raw_parts_mut(slice.as_mut_ptr(), slice.len()) }
}
}