mirror of
https://github.com/asterinas/asterinas.git
synced 2025-06-25 02:13:24 +00:00
743 lines
25 KiB
Rust
743 lines
25 KiB
Rust
// SPDX-License-Identifier: MPL-2.0
|
|
|
|
//! Virtual Memory Address Regions (VMARs).
|
|
|
|
mod dyn_cap;
|
|
mod interval_set;
|
|
mod static_cap;
|
|
pub mod vm_mapping;
|
|
|
|
use core::{num::NonZeroUsize, ops::Range};
|
|
|
|
use align_ext::AlignExt;
|
|
use aster_rights::Rights;
|
|
use ostd::{
|
|
cpu::CpuExceptionInfo,
|
|
mm::{tlb::TlbFlushOp, PageFlags, PageProperty, VmSpace, MAX_USERSPACE_VADDR},
|
|
};
|
|
|
|
use self::{
|
|
interval_set::{Interval, IntervalSet},
|
|
vm_mapping::{MappedVmo, VmMapping},
|
|
};
|
|
use super::page_fault_handler::PageFaultHandler;
|
|
use crate::{
|
|
prelude::*,
|
|
process::{Process, ResourceType},
|
|
thread::exception::{handle_page_fault_from_vm_space, PageFaultInfo},
|
|
vm::{
|
|
perms::VmPerms,
|
|
vmo::{Vmo, VmoRightsOp},
|
|
},
|
|
};
|
|
|
|
/// Virtual Memory Address Regions (VMARs) are a type of capability that manages
|
|
/// user address spaces.
|
|
///
|
|
/// # Capabilities
|
|
///
|
|
/// As a capability, each VMAR is associated with a set of access rights,
|
|
/// whose semantics are explained below.
|
|
///
|
|
/// The semantics of each access rights for VMARs are described below:
|
|
/// * The Dup right allows duplicating a VMAR.
|
|
/// * The Read, Write, Exec rights allow creating memory mappings with
|
|
/// readable, writable, and executable access permissions, respectively.
|
|
/// * The Read and Write rights allow the VMAR to be read from and written to
|
|
/// directly.
|
|
///
|
|
/// VMARs are implemented with two flavors of capabilities:
|
|
/// the dynamic one (`Vmar<Rights>`) and the static one (`Vmar<R: TRights>`).
|
|
pub struct Vmar<R = Rights>(Arc<Vmar_>, R);
|
|
|
|
pub trait VmarRightsOp {
|
|
/// Returns the access rights.
|
|
fn rights(&self) -> Rights;
|
|
/// Checks whether current rights meet the input `rights`.
|
|
fn check_rights(&self, rights: Rights) -> Result<()>;
|
|
}
|
|
|
|
impl<R> PartialEq for Vmar<R> {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
Arc::ptr_eq(&self.0, &other.0)
|
|
}
|
|
}
|
|
|
|
impl<R> VmarRightsOp for Vmar<R> {
|
|
default fn rights(&self) -> Rights {
|
|
unimplemented!()
|
|
}
|
|
|
|
default fn check_rights(&self, rights: Rights) -> Result<()> {
|
|
if self.rights().contains(rights) {
|
|
Ok(())
|
|
} else {
|
|
return_errno_with_message!(Errno::EACCES, "Rights check failed");
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<R> PageFaultHandler for Vmar<R> {
|
|
default fn handle_page_fault(&self, _page_fault_info: &PageFaultInfo) -> Result<()> {
|
|
unimplemented!()
|
|
}
|
|
}
|
|
|
|
impl<R> Vmar<R> {
|
|
/// FIXME: This function should require access control
|
|
pub fn vm_space(&self) -> &Arc<VmSpace> {
|
|
self.0.vm_space()
|
|
}
|
|
|
|
/// Resizes the original mapping.
|
|
///
|
|
/// The range of the mapping goes from `map_addr..map_addr + old_size` to
|
|
/// `map_addr..map_addr + new_size`.
|
|
///
|
|
/// The range of the original mapping does not have to solely map to a
|
|
/// whole [`VmMapping`], but it must ensure that all existing ranges have a
|
|
/// mapping. Otherwise, this method will return `Err`.
|
|
///
|
|
/// If the new mapping size is smaller than the original mapping size, the
|
|
/// extra part will be unmapped. If the new mapping is larger than the old
|
|
/// mapping and the extra part overlaps with existing mapping, resizing
|
|
/// will fail and return `Err`.
|
|
pub fn resize_mapping(&self, map_addr: Vaddr, old_size: usize, new_size: usize) -> Result<()> {
|
|
self.0.resize_mapping(map_addr, old_size, new_size)
|
|
}
|
|
}
|
|
|
|
pub(super) struct Vmar_ {
|
|
/// VMAR inner
|
|
inner: RwMutex<VmarInner>,
|
|
/// The offset relative to the root VMAR
|
|
base: Vaddr,
|
|
/// The total size of the VMAR in bytes
|
|
size: usize,
|
|
/// The attached `VmSpace`
|
|
vm_space: Arc<VmSpace>,
|
|
}
|
|
|
|
struct VmarInner {
|
|
/// The mapped pages and associated metadata.
|
|
vm_mappings: IntervalSet<Vaddr, VmMapping>,
|
|
/// The total mapped memory in bytes.
|
|
total_vm: usize,
|
|
}
|
|
|
|
impl VmarInner {
|
|
const fn new() -> Self {
|
|
Self {
|
|
vm_mappings: IntervalSet::new(),
|
|
total_vm: 0,
|
|
}
|
|
}
|
|
|
|
/// Returns `Ok` if the calling process may expand its mapped
|
|
/// memory by the passed size.
|
|
fn check_expand_size(&mut self, expand_size: usize) -> Result<()> {
|
|
let Some(process) = Process::current() else {
|
|
// When building a `Process`, the kernel task needs to build
|
|
// some `VmMapping`s, in which case this branch is reachable.
|
|
return Ok(());
|
|
};
|
|
|
|
let rlimt_as = process
|
|
.resource_limits()
|
|
.get_rlimit(ResourceType::RLIMIT_AS)
|
|
.get_cur();
|
|
|
|
let new_total_vm = self
|
|
.total_vm
|
|
.checked_add(expand_size)
|
|
.ok_or(Errno::ENOMEM)?;
|
|
if new_total_vm > rlimt_as as usize {
|
|
return_errno_with_message!(Errno::ENOMEM, "address space limit overflow");
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Inserts a `VmMapping` into the `Vmar`.
|
|
///
|
|
/// Make sure the insertion doesn't exceed address space limit.
|
|
fn insert(&mut self, vm_mapping: VmMapping) {
|
|
self.total_vm += vm_mapping.map_size();
|
|
self.vm_mappings.insert(vm_mapping);
|
|
}
|
|
|
|
/// Removes a `VmMapping` based on the provided key from the `Vmar`.
|
|
fn remove(&mut self, key: &Vaddr) -> Option<VmMapping> {
|
|
let vm_mapping = self.vm_mappings.remove(key)?;
|
|
self.total_vm -= vm_mapping.map_size();
|
|
Some(vm_mapping)
|
|
}
|
|
|
|
/// Calculates the total amount of overlap between `VmMapping`s
|
|
/// and the provided range.
|
|
fn count_overlap_size(&self, range: Range<Vaddr>) -> usize {
|
|
let mut sum_overlap_size = 0;
|
|
for vm_mapping in self.vm_mappings.find(&range) {
|
|
let vm_mapping_range = vm_mapping.range();
|
|
let intersected_range = get_intersected_range(&range, &vm_mapping_range);
|
|
sum_overlap_size += intersected_range.end - intersected_range.start;
|
|
}
|
|
sum_overlap_size
|
|
}
|
|
|
|
/// Allocates a free region for mapping with a specific offset and size.
|
|
///
|
|
/// If the provided range is already occupied, return an error.
|
|
fn alloc_free_region_exact(&mut self, offset: Vaddr, size: usize) -> Result<Range<Vaddr>> {
|
|
if self
|
|
.vm_mappings
|
|
.find(&(offset..offset + size))
|
|
.next()
|
|
.is_some()
|
|
{
|
|
return_errno_with_message!(Errno::EACCES, "Requested region is already occupied");
|
|
}
|
|
|
|
Ok(offset..(offset + size))
|
|
}
|
|
|
|
/// Allocates a free region for mapping with a specific offset and size.
|
|
///
|
|
/// If the provided range is already occupied, this function truncates all
|
|
/// the mappings that intersect with the range.
|
|
fn alloc_free_region_exact_truncate(
|
|
&mut self,
|
|
vm_space: &VmSpace,
|
|
offset: Vaddr,
|
|
size: usize,
|
|
) -> Result<Range<Vaddr>> {
|
|
let range = offset..offset + size;
|
|
let mut mappings_to_remove = Vec::new();
|
|
for vm_mapping in self.vm_mappings.find(&range) {
|
|
mappings_to_remove.push(vm_mapping.map_to_addr());
|
|
}
|
|
|
|
for vm_mapping_addr in mappings_to_remove {
|
|
let vm_mapping = self.remove(&vm_mapping_addr).unwrap();
|
|
let vm_mapping_range = vm_mapping.range();
|
|
let intersected_range = get_intersected_range(&range, &vm_mapping_range);
|
|
|
|
let (left, taken, right) = vm_mapping.split_range(&intersected_range)?;
|
|
if let Some(left) = left {
|
|
self.insert(left);
|
|
}
|
|
if let Some(right) = right {
|
|
self.insert(right);
|
|
}
|
|
|
|
taken.unmap(vm_space)?;
|
|
}
|
|
|
|
Ok(offset..(offset + size))
|
|
}
|
|
|
|
/// Allocates a free region for mapping.
|
|
///
|
|
/// If no such region is found, return an error.
|
|
fn alloc_free_region(&mut self, size: usize, align: usize) -> Result<Range<Vaddr>> {
|
|
// Fast path that there's still room to the end.
|
|
let highest_occupied = self
|
|
.vm_mappings
|
|
.iter()
|
|
.next_back()
|
|
.map_or(ROOT_VMAR_LOWEST_ADDR, |vm_mapping| vm_mapping.range().end);
|
|
// FIXME: The up-align may overflow.
|
|
let last_occupied_aligned = highest_occupied.align_up(align);
|
|
if let Some(last) = last_occupied_aligned.checked_add(size) {
|
|
if last <= ROOT_VMAR_CAP_ADDR {
|
|
return Ok(last_occupied_aligned..last);
|
|
}
|
|
}
|
|
|
|
// Slow path that we need to search for a free region.
|
|
// Here, we use a simple brute-force FIRST-FIT algorithm.
|
|
// Allocate as low as possible to reduce fragmentation.
|
|
let mut last_end: Vaddr = ROOT_VMAR_LOWEST_ADDR;
|
|
for vm_mapping in self.vm_mappings.iter() {
|
|
let range = vm_mapping.range();
|
|
|
|
debug_assert!(range.start >= last_end);
|
|
debug_assert!(range.end <= highest_occupied);
|
|
|
|
let last_aligned = last_end.align_up(align);
|
|
let needed_end = last_aligned
|
|
.checked_add(size)
|
|
.ok_or(Error::new(Errno::ENOMEM))?;
|
|
|
|
if needed_end <= range.start {
|
|
return Ok(last_aligned..needed_end);
|
|
}
|
|
|
|
last_end = range.end;
|
|
}
|
|
|
|
return_errno_with_message!(Errno::ENOMEM, "Cannot find free region for mapping");
|
|
}
|
|
}
|
|
|
|
pub const ROOT_VMAR_LOWEST_ADDR: Vaddr = 0x001_0000; // 64 KiB is the Linux configurable default
|
|
const ROOT_VMAR_CAP_ADDR: Vaddr = MAX_USERSPACE_VADDR;
|
|
|
|
/// Returns whether the input `vaddr` is a legal user space virtual address.
|
|
pub fn is_userspace_vaddr(vaddr: Vaddr) -> bool {
|
|
(ROOT_VMAR_LOWEST_ADDR..ROOT_VMAR_CAP_ADDR).contains(&vaddr)
|
|
}
|
|
|
|
impl Interval<usize> for Arc<Vmar_> {
|
|
fn range(&self) -> Range<usize> {
|
|
self.base..(self.base + self.size)
|
|
}
|
|
}
|
|
|
|
impl Vmar_ {
|
|
fn new(inner: VmarInner, vm_space: Arc<VmSpace>, base: usize, size: usize) -> Arc<Self> {
|
|
Arc::new(Vmar_ {
|
|
inner: RwMutex::new(inner),
|
|
base,
|
|
size,
|
|
vm_space,
|
|
})
|
|
}
|
|
|
|
fn new_root() -> Arc<Self> {
|
|
let vmar_inner = VmarInner::new();
|
|
let mut vm_space = VmSpace::new();
|
|
Vmar_::new(vmar_inner, Arc::new(vm_space), 0, ROOT_VMAR_CAP_ADDR)
|
|
}
|
|
|
|
fn protect(&self, perms: VmPerms, range: Range<usize>) -> Result<()> {
|
|
assert!(range.start % PAGE_SIZE == 0);
|
|
assert!(range.end % PAGE_SIZE == 0);
|
|
self.do_protect_inner(perms, range)?;
|
|
Ok(())
|
|
}
|
|
|
|
// Do real protect. The protected range is ensured to be mapped.
|
|
fn do_protect_inner(&self, perms: VmPerms, range: Range<usize>) -> Result<()> {
|
|
let mut inner = self.inner.write();
|
|
let vm_space = self.vm_space();
|
|
|
|
let mut protect_mappings = Vec::new();
|
|
|
|
for vm_mapping in inner.vm_mappings.find(&range) {
|
|
protect_mappings.push((vm_mapping.map_to_addr(), vm_mapping.perms()));
|
|
}
|
|
|
|
for (vm_mapping_addr, vm_mapping_perms) in protect_mappings {
|
|
if perms == vm_mapping_perms {
|
|
continue;
|
|
}
|
|
let vm_mapping = inner.remove(&vm_mapping_addr).unwrap();
|
|
let vm_mapping_range = vm_mapping.range();
|
|
let intersected_range = get_intersected_range(&range, &vm_mapping_range);
|
|
|
|
// Protects part of the taken `VmMapping`.
|
|
let (left, taken, right) = vm_mapping.split_range(&intersected_range)?;
|
|
|
|
let taken = taken.protect(vm_space.as_ref(), perms);
|
|
inner.insert(taken);
|
|
|
|
// And put the rest back.
|
|
if let Some(left) = left {
|
|
inner.insert(left);
|
|
}
|
|
if let Some(right) = right {
|
|
inner.insert(right);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Handles user space page fault, if the page fault is successfully handled, return Ok(()).
|
|
pub fn handle_page_fault(&self, page_fault_info: &PageFaultInfo) -> Result<()> {
|
|
let address = page_fault_info.address;
|
|
if !(self.base..self.base + self.size).contains(&address) {
|
|
return_errno_with_message!(Errno::EACCES, "page fault addr is not in current vmar");
|
|
}
|
|
|
|
let inner = self.inner.read();
|
|
|
|
if let Some(vm_mapping) = inner.vm_mappings.find_one(&address) {
|
|
debug_assert!(vm_mapping.range().contains(&address));
|
|
return vm_mapping.handle_page_fault(&self.vm_space, page_fault_info);
|
|
}
|
|
|
|
return_errno_with_message!(Errno::EACCES, "page fault addr is not in current vmar");
|
|
}
|
|
|
|
/// Clears all content of the root VMAR.
|
|
fn clear_root_vmar(&self) -> Result<()> {
|
|
self.vm_space.clear().unwrap();
|
|
let mut inner = self.inner.write();
|
|
inner.vm_mappings.clear();
|
|
Ok(())
|
|
}
|
|
|
|
pub fn remove_mapping(&self, range: Range<usize>) -> Result<()> {
|
|
let mut inner = self.inner.write();
|
|
inner.alloc_free_region_exact_truncate(&self.vm_space, range.start, range.len())?;
|
|
Ok(())
|
|
}
|
|
|
|
// Split and unmap the found mapping if resize smaller.
|
|
// Enlarge the last mapping if resize larger.
|
|
fn resize_mapping(&self, map_addr: Vaddr, old_size: usize, new_size: usize) -> Result<()> {
|
|
debug_assert!(map_addr % PAGE_SIZE == 0);
|
|
debug_assert!(old_size % PAGE_SIZE == 0);
|
|
debug_assert!(new_size % PAGE_SIZE == 0);
|
|
|
|
if new_size == 0 {
|
|
return_errno_with_message!(Errno::EINVAL, "can not resize a mapping to 0 size");
|
|
}
|
|
|
|
if new_size == old_size {
|
|
return Ok(());
|
|
}
|
|
|
|
let old_map_end = map_addr + old_size;
|
|
let new_map_end = map_addr + new_size;
|
|
|
|
if new_size < old_size {
|
|
self.remove_mapping(new_map_end..old_map_end)?;
|
|
return Ok(());
|
|
}
|
|
|
|
let mut inner = self.inner.write();
|
|
let last_mapping = inner.vm_mappings.find_one(&(old_map_end - 1)).unwrap();
|
|
let last_mapping_addr = last_mapping.map_to_addr();
|
|
let extra_mapping_start = last_mapping.map_end();
|
|
|
|
inner.check_expand_size(new_map_end - extra_mapping_start)?;
|
|
|
|
let last_mapping = inner.remove(&last_mapping_addr).unwrap();
|
|
inner.alloc_free_region_exact(extra_mapping_start, new_map_end - extra_mapping_start)?;
|
|
let last_mapping = last_mapping.enlarge(new_map_end - extra_mapping_start);
|
|
inner.insert(last_mapping);
|
|
Ok(())
|
|
}
|
|
|
|
/// Returns the attached `VmSpace`.
|
|
fn vm_space(&self) -> &Arc<VmSpace> {
|
|
&self.vm_space
|
|
}
|
|
|
|
pub(super) fn new_fork_root(self: &Arc<Self>) -> Result<Arc<Self>> {
|
|
let new_vmar_ = {
|
|
let vmar_inner = VmarInner::new();
|
|
let mut new_space = VmSpace::new();
|
|
Vmar_::new(vmar_inner, Arc::new(new_space), self.base, self.size)
|
|
};
|
|
|
|
{
|
|
let inner = self.inner.read();
|
|
let mut new_inner = new_vmar_.inner.write();
|
|
|
|
// Clone mappings.
|
|
let new_vmspace = new_vmar_.vm_space();
|
|
let range = self.base..(self.base + self.size);
|
|
let mut new_cursor = new_vmspace.cursor_mut(&range).unwrap();
|
|
let cur_vmspace = self.vm_space();
|
|
let mut cur_cursor = cur_vmspace.cursor_mut(&range).unwrap();
|
|
for vm_mapping in inner.vm_mappings.iter() {
|
|
let base = vm_mapping.map_to_addr();
|
|
|
|
// Clone the `VmMapping` to the new VMAR.
|
|
let new_mapping = vm_mapping.new_fork()?;
|
|
new_inner.insert(new_mapping);
|
|
|
|
// Protect the mapping and copy to the new page table for COW.
|
|
cur_cursor.jump(base).unwrap();
|
|
new_cursor.jump(base).unwrap();
|
|
let mut op = |page: &mut PageProperty| {
|
|
page.flags -= PageFlags::W;
|
|
};
|
|
new_cursor.copy_from(&mut cur_cursor, vm_mapping.map_size(), &mut op);
|
|
}
|
|
cur_cursor.flusher().issue_tlb_flush(TlbFlushOp::All);
|
|
cur_cursor.flusher().dispatch_tlb_flush();
|
|
}
|
|
|
|
Ok(new_vmar_)
|
|
}
|
|
}
|
|
|
|
/// This is for fallible user space write handling.
|
|
fn handle_page_fault_wrapper(
|
|
vm_space: &VmSpace,
|
|
trap_info: &CpuExceptionInfo,
|
|
) -> core::result::Result<(), ()> {
|
|
handle_page_fault_from_vm_space(vm_space, &trap_info.try_into().unwrap())
|
|
}
|
|
|
|
impl<R> Vmar<R> {
|
|
/// The base address, i.e., the offset relative to the root VMAR.
|
|
///
|
|
/// The base address of a root VMAR is zero.
|
|
pub fn base(&self) -> Vaddr {
|
|
self.0.base
|
|
}
|
|
|
|
/// The size of the VMAR in bytes.
|
|
pub fn size(&self) -> usize {
|
|
self.0.size
|
|
}
|
|
}
|
|
|
|
/// Options for creating a new mapping. The mapping is not allowed to overlap
|
|
/// with any child VMARs. And unless specified otherwise, it is not allowed
|
|
/// to overlap with any existing mapping, either.
|
|
pub struct VmarMapOptions<R1, R2> {
|
|
parent: Vmar<R1>,
|
|
vmo: Option<Vmo<R2>>,
|
|
perms: VmPerms,
|
|
vmo_offset: usize,
|
|
vmo_limit: usize,
|
|
size: usize,
|
|
offset: Option<usize>,
|
|
align: usize,
|
|
can_overwrite: bool,
|
|
// Whether the mapping is mapped with `MAP_SHARED`
|
|
is_shared: bool,
|
|
// Whether the mapping needs to handle surrounding pages when handling page fault.
|
|
handle_page_faults_around: bool,
|
|
}
|
|
|
|
impl<R1, R2> VmarMapOptions<R1, R2> {
|
|
/// Creates a default set of options with the VMO and the memory access
|
|
/// permissions.
|
|
///
|
|
/// The VMO must have access rights that correspond to the memory
|
|
/// access permissions. For example, if `perms` contains `VmPerms::Write`,
|
|
/// then `vmo.rights()` should contain `Rights::WRITE`.
|
|
pub fn new(parent: Vmar<R1>, size: usize, perms: VmPerms) -> Self {
|
|
Self {
|
|
parent,
|
|
vmo: None,
|
|
perms,
|
|
vmo_offset: 0,
|
|
vmo_limit: usize::MAX,
|
|
size,
|
|
offset: None,
|
|
align: PAGE_SIZE,
|
|
can_overwrite: false,
|
|
is_shared: false,
|
|
handle_page_faults_around: false,
|
|
}
|
|
}
|
|
|
|
/// Binds a VMO to the mapping.
|
|
///
|
|
/// If the mapping is a private mapping, its size may not be equal to that of the VMO.
|
|
/// For example, it is ok to create a mapping whose size is larger than
|
|
/// that of the VMO, although one cannot read from or write to the
|
|
/// part of the mapping that is not backed by the VMO.
|
|
///
|
|
/// So you may wonder: what is the point of supporting such _oversized_
|
|
/// mappings? The reason is two-fold.
|
|
/// 1. VMOs are resizable. So even if a mapping is backed by a VMO whose
|
|
/// size is equal to that of the mapping initially, we cannot prevent
|
|
/// the VMO from shrinking.
|
|
/// 2. Mappings are not allowed to overlap by default. As a result,
|
|
/// oversized mappings can serve as a placeholder to prevent future
|
|
/// mappings from occupying some particular address ranges accidentally.
|
|
pub fn vmo(mut self, vmo: Vmo<R2>) -> Self {
|
|
self.vmo = Some(vmo);
|
|
|
|
self
|
|
}
|
|
|
|
/// Sets the offset of the first memory page in the VMO that is to be
|
|
/// mapped into the VMAR.
|
|
///
|
|
/// The offset must be page-aligned and within the VMO.
|
|
///
|
|
/// The default value is zero.
|
|
pub fn vmo_offset(mut self, offset: usize) -> Self {
|
|
self.vmo_offset = offset;
|
|
self
|
|
}
|
|
|
|
/// Sets the access limit offset for the binding VMO.
|
|
pub fn vmo_limit(mut self, limit: usize) -> Self {
|
|
self.vmo_limit = limit;
|
|
self
|
|
}
|
|
|
|
/// Sets the mapping's alignment.
|
|
///
|
|
/// The default value is the page size.
|
|
///
|
|
/// The provided alignment must be a power of two and a multiple of the
|
|
/// page size.
|
|
pub fn align(mut self, align: usize) -> Self {
|
|
self.align = align;
|
|
self
|
|
}
|
|
|
|
/// Sets the mapping's offset inside the VMAR.
|
|
///
|
|
/// The offset must satisfy the alignment requirement.
|
|
/// Also, the mapping's range `[offset, offset + size)` must be within
|
|
/// the VMAR.
|
|
///
|
|
/// If not set, the system will choose an offset automatically.
|
|
pub fn offset(mut self, offset: usize) -> Self {
|
|
self.offset = Some(offset);
|
|
self
|
|
}
|
|
|
|
/// Sets whether the mapping can overwrite existing mappings.
|
|
///
|
|
/// The default value is false.
|
|
///
|
|
/// If this option is set to true, then the `offset` option must be
|
|
/// set.
|
|
pub fn can_overwrite(mut self, can_overwrite: bool) -> Self {
|
|
self.can_overwrite = can_overwrite;
|
|
self
|
|
}
|
|
|
|
/// Sets whether the mapping can be shared with other process.
|
|
///
|
|
/// The default value is false.
|
|
///
|
|
/// If this value is set to true, the mapping will be shared with child
|
|
/// process when forking.
|
|
pub fn is_shared(mut self, is_shared: bool) -> Self {
|
|
self.is_shared = is_shared;
|
|
self
|
|
}
|
|
|
|
/// Sets the mapping to handle surrounding pages when handling page fault.
|
|
pub fn handle_page_faults_around(mut self) -> Self {
|
|
self.handle_page_faults_around = true;
|
|
self
|
|
}
|
|
|
|
/// Creates the mapping and adds it to the parent VMAR.
|
|
///
|
|
/// All options will be checked at this point.
|
|
///
|
|
/// On success, the virtual address of the new mapping is returned.
|
|
pub fn build(self) -> Result<Vaddr> {
|
|
self.check_options()?;
|
|
let Self {
|
|
parent,
|
|
vmo,
|
|
perms,
|
|
vmo_offset,
|
|
vmo_limit,
|
|
size: map_size,
|
|
offset,
|
|
align,
|
|
can_overwrite,
|
|
is_shared,
|
|
handle_page_faults_around,
|
|
} = self;
|
|
|
|
let mut inner = parent.0.inner.write();
|
|
|
|
inner.check_expand_size(map_size).or_else(|e| {
|
|
if can_overwrite {
|
|
let offset = offset.ok_or(Error::with_message(
|
|
Errno::EINVAL,
|
|
"offset cannot be None since can overwrite is set",
|
|
))?;
|
|
// MAP_FIXED may remove pages overlapped with requested mapping.
|
|
let expand_size = map_size - inner.count_overlap_size(offset..offset + map_size);
|
|
inner.check_expand_size(expand_size)
|
|
} else {
|
|
Err(e)
|
|
}
|
|
})?;
|
|
|
|
// Allocates a free region.
|
|
trace!("allocate free region, map_size = 0x{:x}, offset = {:x?}, align = 0x{:x}, can_overwrite = {}", map_size, offset, align, can_overwrite);
|
|
let map_to_addr = if can_overwrite {
|
|
// If can overwrite, the offset is ensured not to be `None`.
|
|
let offset = offset.ok_or(Error::with_message(
|
|
Errno::EINVAL,
|
|
"offset cannot be None since can overwrite is set",
|
|
))?;
|
|
inner.alloc_free_region_exact_truncate(parent.vm_space(), offset, map_size)?;
|
|
offset
|
|
} else if let Some(offset) = offset {
|
|
inner.alloc_free_region_exact(offset, map_size)?;
|
|
offset
|
|
} else {
|
|
let free_region = inner.alloc_free_region(map_size, align)?;
|
|
free_region.start
|
|
};
|
|
|
|
// Build the mapping.
|
|
let vmo = vmo.map(|vmo| MappedVmo::new(vmo.to_dyn(), vmo_offset..vmo_limit));
|
|
let vm_mapping = VmMapping::new(
|
|
NonZeroUsize::new(map_size).unwrap(),
|
|
map_to_addr,
|
|
vmo,
|
|
is_shared,
|
|
handle_page_faults_around,
|
|
perms,
|
|
);
|
|
|
|
// Add the mapping to the VMAR.
|
|
inner.insert(vm_mapping);
|
|
|
|
Ok(map_to_addr)
|
|
}
|
|
|
|
/// Checks whether all options are valid.
|
|
fn check_options(&self) -> Result<()> {
|
|
// Check align.
|
|
debug_assert!(self.align % PAGE_SIZE == 0);
|
|
debug_assert!(self.align.is_power_of_two());
|
|
if self.align % PAGE_SIZE != 0 || !self.align.is_power_of_two() {
|
|
return_errno_with_message!(Errno::EINVAL, "invalid align");
|
|
}
|
|
debug_assert!(self.size % self.align == 0);
|
|
if self.size % self.align != 0 {
|
|
return_errno_with_message!(Errno::EINVAL, "invalid mapping size");
|
|
}
|
|
debug_assert!(self.vmo_offset % self.align == 0);
|
|
if self.vmo_offset % self.align != 0 {
|
|
return_errno_with_message!(Errno::EINVAL, "invalid vmo offset");
|
|
}
|
|
if let Some(offset) = self.offset {
|
|
debug_assert!(offset % self.align == 0);
|
|
if offset % self.align != 0 {
|
|
return_errno_with_message!(Errno::EINVAL, "invalid offset");
|
|
}
|
|
}
|
|
self.check_perms()?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Checks whether the permissions of the mapping is subset of vmo rights.
|
|
fn check_perms(&self) -> Result<()> {
|
|
let Some(vmo) = &self.vmo else {
|
|
return Ok(());
|
|
};
|
|
|
|
let perm_rights = Rights::from(self.perms);
|
|
vmo.check_rights(perm_rights)
|
|
}
|
|
}
|
|
|
|
/// Determines whether two ranges are intersected.
|
|
/// returns false if one of the ranges has a length of 0
|
|
pub fn is_intersected(range1: &Range<usize>, range2: &Range<usize>) -> bool {
|
|
range1.start.max(range2.start) < range1.end.min(range2.end)
|
|
}
|
|
|
|
/// Gets the intersection range of two ranges.
|
|
/// The two ranges should be ensured to be intersected.
|
|
pub fn get_intersected_range(range1: &Range<usize>, range2: &Range<usize>) -> Range<usize> {
|
|
debug_assert!(is_intersected(range1, range2));
|
|
range1.start.max(range2.start)..range1.end.min(range2.end)
|
|
}
|