2024-12-30 09:46:14 +08:00

550 lines
14 KiB
C

// SPDX-License-Identifier: MPL-2.0
#include <unistd.h>
#include <sys/signal.h>
#include <sys/socket.h>
#include <sys/poll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include "test.h"
static struct sockaddr_in sk_addr;
#define C_PORT htons(0x1234)
#define S_PORT htons(0x1235)
FN_SETUP(general)
{
sk_addr.sin_family = AF_INET;
sk_addr.sin_port = htons(8080);
CHECK(inet_aton("127.0.0.1", &sk_addr.sin_addr));
signal(SIGPIPE, SIG_IGN);
}
END_SETUP()
static int sk_unbound;
static int sk_bound;
static int sk_listen;
static int sk_connected;
static int sk_accepted;
FN_SETUP(unbound)
{
sk_unbound = CHECK(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0));
}
END_SETUP()
FN_SETUP(bound)
{
sk_bound = CHECK(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0));
sk_addr.sin_port = C_PORT;
CHECK(bind(sk_bound, (struct sockaddr *)&sk_addr, sizeof(sk_addr)));
}
END_SETUP()
FN_SETUP(listen)
{
sk_listen = CHECK(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0));
sk_addr.sin_port = S_PORT;
CHECK(bind(sk_listen, (struct sockaddr *)&sk_addr, sizeof(sk_addr)));
CHECK(listen(sk_listen, 2));
}
END_SETUP()
FN_SETUP(connected)
{
sk_connected = CHECK(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0));
sk_addr.sin_port = S_PORT;
CHECK_WITH(connect(sk_connected, (struct sockaddr *)&sk_addr,
sizeof(sk_addr)),
_ret < 0 && errno == EINPROGRESS);
}
END_SETUP()
FN_SETUP(accpected)
{
struct sockaddr addr;
socklen_t addrlen = sizeof(addr);
struct pollfd pfd = { .fd = sk_listen, .events = POLLIN };
CHECK_WITH(poll(&pfd, 1, 1000),
_ret >= 0 && ((pfd.revents & (POLLIN | POLLOUT)) & POLLIN));
sk_accepted = CHECK(accept(sk_listen, &addr, &addrlen));
}
END_SETUP()
FN_TEST(getsockname)
{
struct sockaddr_in saddr = { .sin_port = 0xbeef };
struct sockaddr *psaddr = (struct sockaddr *)&saddr;
socklen_t addrlen = 0;
TEST_RES(getsockname(sk_unbound, psaddr, &addrlen),
addrlen == sizeof(saddr) && saddr.sin_port == 0xbeef);
TEST_RES(getsockname(sk_unbound, psaddr, &addrlen),
addrlen == sizeof(saddr) && saddr.sin_port == 0);
TEST_RES(getsockname(sk_bound, psaddr, &addrlen),
addrlen == sizeof(saddr) && saddr.sin_port == C_PORT);
TEST_RES(getsockname(sk_listen, psaddr, &addrlen),
addrlen == sizeof(saddr) && saddr.sin_port == S_PORT);
TEST_RES(getsockname(sk_connected, psaddr, &addrlen),
addrlen == sizeof(saddr) && saddr.sin_port != S_PORT);
TEST_RES(getsockname(sk_accepted, psaddr, &addrlen),
addrlen == sizeof(saddr) && saddr.sin_port == S_PORT);
}
END_TEST()
FN_TEST(getpeername)
{
struct sockaddr_in saddr = { .sin_port = 0xbeef };
struct sockaddr *psaddr = (struct sockaddr *)&saddr;
socklen_t addrlen = sizeof(saddr);
TEST_ERRNO(getpeername(sk_unbound, psaddr, &addrlen), ENOTCONN);
TEST_ERRNO(getpeername(sk_bound, psaddr, &addrlen), ENOTCONN);
TEST_ERRNO(getpeername(sk_listen, psaddr, &addrlen), ENOTCONN);
TEST_RES(getpeername(sk_connected, psaddr, &addrlen),
addrlen == sizeof(saddr) && saddr.sin_port == S_PORT);
TEST_RES(getpeername(sk_accepted, psaddr, &addrlen),
addrlen == sizeof(saddr) && saddr.sin_port != S_PORT);
}
END_TEST()
FN_TEST(peername_is_peer_sockname)
{
struct sockaddr_in saddr = { .sin_port = 0xbeef };
struct sockaddr *psaddr = (struct sockaddr *)&saddr;
socklen_t addrlen = sizeof(saddr);
int em_port;
TEST_RES(getsockname(sk_connected, psaddr, &addrlen),
addrlen == sizeof(saddr));
em_port = saddr.sin_port;
TEST_RES(getpeername(sk_accepted, psaddr, &addrlen),
addrlen == sizeof(saddr) && saddr.sin_port == em_port);
}
END_TEST()
FN_TEST(send)
{
char buf[1] = { 'z' };
TEST_ERRNO(send(sk_unbound, buf, 1, 0), EPIPE);
TEST_ERRNO(send(sk_bound, buf, 1, 0), EPIPE);
TEST_ERRNO(send(sk_listen, buf, 1, 0), EPIPE);
}
END_TEST()
FN_TEST(recv)
{
char buf[1] = { 'z' };
TEST_ERRNO(recv(sk_unbound, buf, 1, 0), ENOTCONN);
TEST_ERRNO(recv(sk_bound, buf, 1, 0), ENOTCONN);
TEST_ERRNO(recv(sk_listen, buf, 1, 0), ENOTCONN);
}
END_TEST()
FN_TEST(send_and_recv)
{
char buf[1];
buf[0] = 'a';
TEST_RES(send(sk_connected, buf, 1, 0), _ret == 1);
buf[0] = 'b';
sk_addr.sin_port = 0xbeef;
TEST_RES(sendto(sk_accepted, buf, 1, 0, (struct sockaddr *)&sk_addr,
sizeof(sk_addr)),
_ret == 1);
TEST_RES(recv(sk_accepted, buf, 1, 0), buf[0] == 'a');
TEST_RES(recv(sk_connected, buf, 1, 0), buf[0] == 'b');
TEST_ERRNO(recv(sk_connected, buf, 1, 0), EAGAIN);
}
END_TEST()
FN_TEST(bind)
{
struct sockaddr *psaddr = (struct sockaddr *)&sk_addr;
socklen_t addrlen = sizeof(sk_addr);
TEST_ERRNO(bind(sk_unbound, psaddr, addrlen - 1), EINVAL);
TEST_ERRNO(bind(sk_bound, psaddr, addrlen), EINVAL);
TEST_ERRNO(bind(sk_listen, psaddr, addrlen), EINVAL);
TEST_ERRNO(bind(sk_connected, psaddr, addrlen), EINVAL);
TEST_ERRNO(bind(sk_accepted, psaddr, addrlen), EINVAL);
}
END_TEST()
FN_TEST(bind_reuseaddr)
{
sk_addr.sin_port = htons(8081);
struct sockaddr *psaddr = (struct sockaddr *)&sk_addr;
socklen_t addrlen = sizeof(sk_addr);
int disable = 0;
int enable = 1;
int sk1 = TEST_SUCC(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0));
int sk2 = TEST_SUCC(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0));
TEST_SUCC(bind(sk1, psaddr, addrlen));
TEST_ERRNO(bind(sk2, psaddr, addrlen), EADDRINUSE);
// FIXME: The test will fail in Asterinas since it doesn't check
// if the previous socket was bound with `SO_REUSEADDR`
//
// TEST_SUCC(setsockopt(sk1, SOL_SOCKET, SO_REUSEADDR, &disable,
// sizeof(disable)));
// TEST_SUCC(setsockopt(sk2, SOL_SOCKET, SO_REUSEADDR, &enable,
// sizeof(enable)));
// TEST_ERRNO(bind(sk2, psaddr, addrlen), EADDRINUSE);
TEST_SUCC(setsockopt(sk1, SOL_SOCKET, SO_REUSEADDR, &enable,
sizeof(enable)));
TEST_SUCC(setsockopt(sk2, SOL_SOCKET, SO_REUSEADDR, &disable,
sizeof(disable)));
TEST_ERRNO(bind(sk2, psaddr, addrlen), EADDRINUSE);
TEST_SUCC(setsockopt(sk1, SOL_SOCKET, SO_REUSEADDR, &enable,
sizeof(enable)));
TEST_SUCC(setsockopt(sk2, SOL_SOCKET, SO_REUSEADDR, &enable,
sizeof(enable)));
TEST_SUCC(bind(sk2, psaddr, addrlen));
TEST_SUCC(close(sk1));
TEST_SUCC(close(sk2));
}
END_TEST()
FN_TEST(listen)
{
// The second `listen` does nothing but succeed.
// TODO: Will it update the backlog?
TEST_SUCC(listen(sk_listen, 2));
TEST_ERRNO(listen(sk_connected, 2), EINVAL);
TEST_ERRNO(listen(sk_accepted, 2), EINVAL);
}
END_TEST()
FN_TEST(accept)
{
struct sockaddr_in saddr;
struct sockaddr *psaddr = (struct sockaddr *)&saddr;
socklen_t addrlen = sizeof(saddr);
TEST_ERRNO(accept(sk_unbound, psaddr, &addrlen), EINVAL);
TEST_ERRNO(accept(sk_bound, psaddr, &addrlen), EINVAL);
TEST_ERRNO(accept(sk_listen, psaddr, &addrlen), EAGAIN);
TEST_ERRNO(accept(sk_connected, psaddr, &addrlen), EINVAL);
TEST_ERRNO(accept(sk_accepted, psaddr, &addrlen), EINVAL);
}
END_TEST()
FN_TEST(poll)
{
struct pollfd pfd = { .events = POLLIN | POLLOUT };
pfd.fd = sk_unbound;
TEST_RES(poll(&pfd, 1, 0),
(pfd.revents & (POLLIN | POLLOUT)) == POLLOUT);
pfd.fd = sk_bound;
TEST_RES(poll(&pfd, 1, 0),
(pfd.revents & (POLLIN | POLLOUT)) == POLLOUT);
pfd.fd = sk_listen;
TEST_RES(poll(&pfd, 1, 0), (pfd.revents & (POLLIN | POLLOUT)) == 0);
pfd.fd = sk_connected;
TEST_RES(poll(&pfd, 1, 0),
(pfd.revents & (POLLIN | POLLOUT)) == POLLOUT);
pfd.fd = sk_accepted;
TEST_RES(poll(&pfd, 1, 0),
(pfd.revents & (POLLIN | POLLOUT)) == POLLOUT);
}
END_TEST()
FN_TEST(connect)
{
struct sockaddr *psaddr = (struct sockaddr *)&sk_addr;
socklen_t addrlen = sizeof(sk_addr);
TEST_ERRNO(connect(sk_listen, psaddr, addrlen), EISCONN);
TEST_ERRNO(connect(sk_connected, psaddr, addrlen), 0);
TEST_ERRNO(connect(sk_connected, psaddr, addrlen), EISCONN);
TEST_ERRNO(connect(sk_accepted, psaddr, addrlen), EISCONN);
}
END_TEST()
FN_TEST(async_connect)
{
struct pollfd pfd = { .fd = sk_bound, .events = POLLOUT };
int err;
socklen_t errlen = sizeof(err);
sk_addr.sin_port = 0xbeef;
TEST_ERRNO(connect(sk_bound, (struct sockaddr *)&sk_addr,
sizeof(sk_addr)),
EINPROGRESS);
TEST_RES(poll(&pfd, 1, 60), pfd.revents & POLLOUT);
TEST_RES(getsockopt(sk_bound, SOL_SOCKET, SO_ERROR, &err, &errlen),
errlen == sizeof(err) && err == ECONNREFUSED);
// Reading the socket error will cause it to be cleared
TEST_RES(getsockopt(sk_bound, SOL_SOCKET, SO_ERROR, &err, &errlen),
errlen == sizeof(err) && err == 0);
}
END_TEST()
void set_blocking(int sockfd)
{
int flags = CHECK(fcntl(sockfd, F_GETFL, 0));
CHECK(fcntl(sockfd, F_SETFL, flags & (~O_NONBLOCK)));
}
FN_SETUP(enter_blocking_mode)
{
set_blocking(sk_connected);
set_blocking(sk_bound);
}
END_SETUP()
FN_TEST(sendmsg_and_recvmsg)
{
struct msghdr msg = { 0 };
struct iovec iov[2];
char *message = "Message:";
char *message2 = "Hello";
iov[0].iov_base = message;
iov[0].iov_len = strlen(message);
iov[1].iov_base = message2;
iov[1].iov_len = strlen(message2);
msg.msg_iov = iov;
msg.msg_iovlen = 2;
// TEST CASE 1: Send one message and recv one message
TEST_RES(sendmsg(sk_connected, &msg, 0),
_ret == strlen(message) + strlen(message2));
#define BUFFER_SIZE 50
char concatenated[BUFFER_SIZE] = { 0 };
strcat(concatenated, message);
strcat(concatenated, message2);
char buffer[BUFFER_SIZE] = { 0 };
iov[0].iov_base = buffer;
iov[0].iov_len = BUFFER_SIZE;
msg.msg_iovlen = 1;
TEST_RES(recvmsg(sk_accepted, &msg, 0),
_ret == strlen(concatenated) &&
strcmp(buffer, concatenated) == 0);
// TEST CASE 2: Send two message and receive two message
iov[0].iov_base = message;
iov[0].iov_len = strlen(message);
msg.msg_iovlen = 1;
TEST_RES(sendmsg(sk_accepted, &msg, 0), _ret == strlen(message));
TEST_RES(sendmsg(sk_accepted, &msg, 0), _ret == strlen(message));
char first_buffer[BUFFER_SIZE] = { 0 };
char second_buffer[BUFFER_SIZE] = { 0 };
iov[0].iov_base = first_buffer;
iov[0].iov_len = BUFFER_SIZE;
iov[1].iov_base = second_buffer;
iov[1].iov_len = BUFFER_SIZE;
msg.msg_iovlen = 2;
// Ensure two messages are prepared for receiving
sleep(1);
TEST_RES(recvmsg(sk_connected, &msg, 0), _ret == strlen(message) * 2);
// TEST CASE 3: Send via a partially bad send buffer
char *good_buffer = "abc";
char *bad_buffer = (char *)1;
iov[0].iov_base = good_buffer;
iov[0].iov_len = strlen(good_buffer);
iov[1].iov_base = bad_buffer;
iov[1].iov_len = 1;
msg.msg_iov = iov;
msg.msg_iovlen = 2;
TEST_ERRNO(sendmsg(sk_accepted, &msg, 0), EFAULT);
// TEST CASE 4: Receive via a partially bad receive buffer
iov[0].iov_base = good_buffer;
iov[0].iov_len = strlen(good_buffer);
msg.msg_iov = iov;
msg.msg_iovlen = 1;
TEST_RES(sendmsg(sk_accepted, &msg, 0), _ret == strlen(good_buffer));
sleep(1);
char recv_buffer[4096] = { 0 };
iov[0].iov_base = recv_buffer;
iov[0].iov_len = 1;
TEST_RES(recvmsg(sk_connected, &msg, 0), _ret == 1);
iov[0].iov_base = recv_buffer;
iov[0].iov_len = 1;
iov[1].iov_base = (char *)1;
iov[1].iov_len = 1;
msg.msg_iovlen = 2;
TEST_ERRNO(recvmsg(sk_connected, &msg, 0), EFAULT);
iov[0].iov_base = recv_buffer;
iov[0].iov_len = 4096;
msg.msg_iovlen = 1;
TEST_RES(recvmsg(sk_connected, &msg, 0),
_ret == strlen(good_buffer) - 1);
// TEST CASE 5: Send a large buffer
int big_buffer_size = 1000000;
char *big_buffer = (char *)calloc(0, big_buffer_size);
iov[0].iov_base = big_buffer;
iov[0].iov_len = big_buffer_size;
msg.msg_iovlen = 2;
int sndbuf = 0;
socklen_t optlen = sizeof(sndbuf);
TEST_SUCC(getsockopt(sk_accepted, SOL_SOCKET, SO_SNDBUF, &sndbuf,
&optlen));
TEST_RES(sendmsg(sk_accepted, &msg, 0), _ret <= sndbuf);
}
END_TEST()
FN_TEST(self_connect)
{
int sk;
char buf[5];
sk = TEST_SUCC(socket(PF_INET, SOCK_STREAM, 0));
sk_addr.sin_port = htons(8888);
TEST_SUCC(bind(sk, (struct sockaddr *)&sk_addr, sizeof(sk_addr)));
TEST_SUCC(connect(sk, (struct sockaddr *)&sk_addr, sizeof(sk_addr)));
TEST_RES(write(sk, "hello", 5), _ret == 5);
TEST_RES(read(sk, buf, 5), _ret == 5 && memcmp(buf, "hello", 5) == 0);
TEST_SUCC(close(sk));
}
END_TEST()
FN_TEST(listen_at_the_same_address)
{
int sk_listen1;
int sk_listen2;
sk_listen1 = TEST_SUCC(socket(PF_INET, SOCK_STREAM, 0));
sk_listen2 = TEST_SUCC(socket(PF_INET, SOCK_STREAM, 0));
int reuse_option = 1;
TEST_SUCC(setsockopt(sk_listen1, SOL_SOCKET, SO_REUSEADDR,
&reuse_option, sizeof(reuse_option)));
TEST_SUCC(setsockopt(sk_listen2, SOL_SOCKET, SO_REUSEADDR,
&reuse_option, sizeof(reuse_option)));
sk_addr.sin_port = htons(8889);
TEST_SUCC(
bind(sk_listen1, (struct sockaddr *)&sk_addr, sizeof(sk_addr)));
TEST_SUCC(
bind(sk_listen2, (struct sockaddr *)&sk_addr, sizeof(sk_addr)));
TEST_SUCC(listen(sk_listen1, 3));
TEST_ERRNO(listen(sk_listen2, 3), EADDRINUSE);
TEST_SUCC(close(sk_listen1));
TEST_SUCC(close(sk_listen2));
}
END_TEST()
FN_TEST(bind_and_connect_same_address)
{
int sk_listen;
int sk_connect1;
int sk_connect2;
sk_listen = TEST_SUCC(socket(PF_INET, SOCK_STREAM, 0));
sk_connect1 = TEST_SUCC(socket(PF_INET, SOCK_STREAM, 0));
sk_connect2 = TEST_SUCC(socket(PF_INET, SOCK_STREAM, 0));
int reuse_option = 1;
TEST_SUCC(setsockopt(sk_connect1, SOL_SOCKET, SO_REUSEADDR,
&reuse_option, sizeof(reuse_option)));
TEST_SUCC(setsockopt(sk_connect2, SOL_SOCKET, SO_REUSEADDR,
&reuse_option, sizeof(reuse_option)));
int listen_port = 8890;
int connect_port = 8891;
sk_addr.sin_port = htons(listen_port);
TEST_SUCC(
bind(sk_listen, (struct sockaddr *)&sk_addr, sizeof(sk_addr)));
sk_addr.sin_port = htons(connect_port);
TEST_SUCC(bind(sk_connect1, (struct sockaddr *)&sk_addr,
sizeof(sk_addr)));
TEST_SUCC(bind(sk_connect2, (struct sockaddr *)&sk_addr,
sizeof(sk_addr)));
TEST_SUCC(listen(sk_listen, 3));
sk_addr.sin_port = htons(listen_port);
TEST_SUCC(connect(sk_connect1, (struct sockaddr *)&sk_addr,
sizeof(sk_addr)));
TEST_ERRNO(connect(sk_connect2, (struct sockaddr *)&sk_addr,
sizeof(sk_addr)),
EADDRNOTAVAIL);
TEST_SUCC(close(sk_listen));
TEST_SUCC(close(sk_connect1));
TEST_SUCC(close(sk_connect2));
}
END_TEST()