Files
asterinas/ostd/src/mm/dma/dma_stream.rs
2025-03-20 17:25:22 +08:00

434 lines
14 KiB
Rust

// SPDX-License-Identifier: MPL-2.0
use alloc::sync::Arc;
use core::ops::Range;
use cfg_if::cfg_if;
use super::{check_and_insert_dma_mapping, remove_dma_mapping, DmaError, HasDaddr};
use crate::{
arch::iommu,
error::Error,
if_tdx_enabled,
mm::{
dma::{dma_type, Daddr, DmaType},
HasPaddr, Infallible, Paddr, USegment, UntypedMem, VmIo, VmReader, VmWriter, PAGE_SIZE,
},
};
cfg_if! {
if #[cfg(all(target_arch = "x86_64", feature = "cvm_guest"))] {
use crate::arch::tdx_guest;
}
}
/// A streaming DMA mapping. Users must synchronize data
/// before reading or after writing to ensure consistency.
///
/// The mapping is automatically destroyed when this object
/// is dropped.
#[derive(Debug, Clone)]
pub struct DmaStream {
inner: Arc<DmaStreamInner>,
}
#[derive(Debug)]
struct DmaStreamInner {
segment: USegment,
start_daddr: Daddr,
/// TODO: remove this field when on x86.
#[expect(unused)]
is_cache_coherent: bool,
direction: DmaDirection,
}
/// `DmaDirection` limits the data flow direction of [`DmaStream`] and
/// prevents users from reading and writing to [`DmaStream`] unexpectedly.
#[derive(Debug, PartialEq, Clone, Copy)]
pub enum DmaDirection {
/// Data flows to the device
ToDevice,
/// Data flows from the device
FromDevice,
/// Data flows both from and to the device
Bidirectional,
}
impl DmaStream {
/// Establishes DMA stream mapping for a given [`USegment`].
///
/// The method fails if the segment already belongs to a DMA mapping.
pub fn map(
segment: USegment,
direction: DmaDirection,
is_cache_coherent: bool,
) -> Result<Self, DmaError> {
let frame_count = segment.size() / PAGE_SIZE;
let start_paddr = segment.start_paddr();
if !check_and_insert_dma_mapping(start_paddr, frame_count) {
return Err(DmaError::AlreadyMapped);
}
// Ensure that the addresses used later will not overflow
start_paddr.checked_add(frame_count * PAGE_SIZE).unwrap();
let start_daddr = match dma_type() {
DmaType::Direct => {
if_tdx_enabled!({
#[cfg(target_arch = "x86_64")]
// SAFETY:
// This is safe because we are ensuring that the physical address range specified by `start_paddr` and `frame_count` is valid before these operations.
// The `check_and_insert_dma_mapping` function checks if the physical address range is already mapped.
// We are also ensuring that we are only modifying the page table entries corresponding to the physical address range specified by `start_paddr` and `frame_count`.
// Therefore, we are not causing any undefined behavior or violating any of the requirements of the 'unprotect_gpa_range' function.
unsafe {
tdx_guest::unprotect_gpa_range(start_paddr, frame_count).unwrap();
}
});
start_paddr as Daddr
}
DmaType::Iommu => {
for i in 0..frame_count {
let paddr = start_paddr + (i * PAGE_SIZE);
// SAFETY: the `paddr` is restricted by the `start_paddr` and `frame_count` of the `segment`.
unsafe {
iommu::map(paddr as Daddr, paddr).unwrap();
}
}
start_paddr as Daddr
}
};
Ok(Self {
inner: Arc::new(DmaStreamInner {
segment,
start_daddr,
is_cache_coherent,
direction,
}),
})
}
/// Gets the underlying [`USegment`].
///
/// Usually, the CPU side should not access the memory
/// after the DMA mapping is established because
/// there is a chance that the device is updating
/// the memory. Do this at your own risk.
pub fn segment(&self) -> &USegment {
&self.inner.segment
}
/// Returns the number of frames.
pub fn nframes(&self) -> usize {
self.inner.segment.size() / PAGE_SIZE
}
/// Returns the number of bytes.
pub fn nbytes(&self) -> usize {
self.inner.segment.size()
}
/// Returns the DMA direction.
pub fn direction(&self) -> DmaDirection {
self.inner.direction
}
/// Synchronizes the streaming DMA mapping with the device.
///
/// This method should be called under one of the two conditions:
/// 1. The data of the stream DMA mapping has been updated by the device side.
/// The CPU side needs to call the `sync` method before reading data (e.g., using [`read_bytes`]).
/// 2. The data of the stream DMA mapping has been updated by the CPU side
/// (e.g., using [`write_bytes`]).
/// Before the CPU side notifies the device side to read, it must call the `sync` method first.
///
/// [`read_bytes`]: Self::read_bytes
/// [`write_bytes`]: Self::write_bytes
pub fn sync(&self, _byte_range: Range<usize>) -> Result<(), Error> {
cfg_if::cfg_if! {
if #[cfg(target_arch = "x86_64")]{
// The streaming DMA mapping in x86_64 is cache coherent, and does not require synchronization.
// Reference: <https://lwn.net/Articles/855328/>, <https://lwn.net/Articles/2265/>
Ok(())
} else {
if _byte_range.end > self.nbytes() {
return Err(Error::InvalidArgs);
}
if self.inner.is_cache_coherent {
return Ok(());
}
let start_va = crate::mm::paddr_to_vaddr(self.inner.segment.paddr()) as *const u8;
// TODO: Query the CPU for the cache line size via CPUID, we use 64 bytes as the cache line size here.
for i in _byte_range.step_by(64) {
// TODO: Call the cache line flush command in the corresponding architecture.
todo!()
}
Ok(())
}
}
}
}
impl HasDaddr for DmaStream {
fn daddr(&self) -> Daddr {
self.inner.start_daddr
}
}
impl Drop for DmaStreamInner {
fn drop(&mut self) {
let frame_count = self.segment.size() / PAGE_SIZE;
let start_paddr = self.segment.start_paddr();
// Ensure that the addresses used later will not overflow
start_paddr.checked_add(frame_count * PAGE_SIZE).unwrap();
match dma_type() {
DmaType::Direct => {
if_tdx_enabled!({
#[cfg(target_arch = "x86_64")]
// SAFETY:
// This is safe because we are ensuring that the physical address range specified by `start_paddr` and `frame_count` is valid before these operations.
// The `start_paddr()` ensures the `start_paddr` is page-aligned.
// We are also ensuring that we are only modifying the page table entries corresponding to the physical address range specified by `start_paddr` and `frame_count`.
// Therefore, we are not causing any undefined behavior or violating any of the requirements of the `protect_gpa_range` function.
unsafe {
tdx_guest::protect_gpa_range(start_paddr, frame_count).unwrap();
}
});
}
DmaType::Iommu => {
for i in 0..frame_count {
let paddr = start_paddr + (i * PAGE_SIZE);
iommu::unmap(paddr).unwrap();
}
}
}
remove_dma_mapping(start_paddr, frame_count);
}
}
impl VmIo for DmaStream {
/// Reads data into the buffer.
fn read(&self, offset: usize, writer: &mut VmWriter) -> Result<(), Error> {
if self.inner.direction == DmaDirection::ToDevice {
return Err(Error::AccessDenied);
}
self.inner.segment.read(offset, writer)
}
/// Writes data from the buffer.
fn write(&self, offset: usize, reader: &mut VmReader) -> Result<(), Error> {
if self.inner.direction == DmaDirection::FromDevice {
return Err(Error::AccessDenied);
}
self.inner.segment.write(offset, reader)
}
}
impl<'a> DmaStream {
/// Returns a reader to read data from it.
pub fn reader(&'a self) -> Result<VmReader<'a, Infallible>, Error> {
if self.inner.direction == DmaDirection::ToDevice {
return Err(Error::AccessDenied);
}
Ok(self.inner.segment.reader())
}
/// Returns a writer to write data into it.
pub fn writer(&'a self) -> Result<VmWriter<'a, Infallible>, Error> {
if self.inner.direction == DmaDirection::FromDevice {
return Err(Error::AccessDenied);
}
Ok(self.inner.segment.writer())
}
}
impl HasPaddr for DmaStream {
fn paddr(&self) -> Paddr {
self.inner.segment.start_paddr()
}
}
impl AsRef<DmaStream> for DmaStream {
fn as_ref(&self) -> &DmaStream {
self
}
}
/// A slice of streaming DMA mapping.
#[derive(Debug)]
pub struct DmaStreamSlice<Dma> {
stream: Dma,
offset: usize,
len: usize,
}
impl<Dma: AsRef<DmaStream>> DmaStreamSlice<Dma> {
/// Constructs a `DmaStreamSlice` from the [`DmaStream`].
///
/// # Panics
///
/// If the `offset` is greater than or equal to the length of the stream,
/// this method will panic.
/// If the `offset + len` is greater than the length of the stream,
/// this method will panic.
pub fn new(stream: Dma, offset: usize, len: usize) -> Self {
assert!(offset < stream.as_ref().nbytes());
assert!(offset + len <= stream.as_ref().nbytes());
Self {
stream,
offset,
len,
}
}
/// Returns the underlying `DmaStream`.
pub fn stream(&self) -> &DmaStream {
self.stream.as_ref()
}
/// Returns the offset of the slice.
pub fn offset(&self) -> usize {
self.offset
}
/// Returns the number of bytes.
pub fn nbytes(&self) -> usize {
self.len
}
/// Synchronizes the slice of streaming DMA mapping with the device.
pub fn sync(&self) -> Result<(), Error> {
self.stream
.as_ref()
.sync(self.offset..self.offset + self.len)
}
/// Returns a reader to read data from it.
pub fn reader(&self) -> Result<VmReader<Infallible>, Error> {
let stream_reader = self
.stream
.as_ref()
.reader()?
.skip(self.offset)
.limit(self.len);
Ok(stream_reader)
}
/// Returns a writer to write data into it.
pub fn writer(&self) -> Result<VmWriter<Infallible>, Error> {
let stream_writer = self
.stream
.as_ref()
.writer()?
.skip(self.offset)
.limit(self.len);
Ok(stream_writer)
}
}
impl<Dma: AsRef<DmaStream> + Send + Sync> VmIo for DmaStreamSlice<Dma> {
fn read(&self, offset: usize, writer: &mut VmWriter) -> Result<(), Error> {
if writer.avail() + offset > self.len {
return Err(Error::InvalidArgs);
}
self.stream.as_ref().read(self.offset + offset, writer)
}
fn write(&self, offset: usize, reader: &mut VmReader) -> Result<(), Error> {
if reader.remain() + offset > self.len {
return Err(Error::InvalidArgs);
}
self.stream.as_ref().write(self.offset + offset, reader)
}
}
impl<Dma: AsRef<DmaStream>> HasDaddr for DmaStreamSlice<Dma> {
fn daddr(&self) -> Daddr {
self.stream.as_ref().daddr() + self.offset
}
}
impl<Dma: AsRef<DmaStream>> HasPaddr for DmaStreamSlice<Dma> {
fn paddr(&self) -> Paddr {
self.stream.as_ref().paddr() + self.offset
}
}
impl Clone for DmaStreamSlice<DmaStream> {
fn clone(&self) -> Self {
Self {
stream: self.stream.clone(),
offset: self.offset,
len: self.len,
}
}
}
#[cfg(ktest)]
mod test {
use alloc::vec;
use super::*;
use crate::{mm::FrameAllocOptions, prelude::*};
#[ktest]
fn streaming_map() {
let segment = FrameAllocOptions::new()
.alloc_segment_with(1, |_| ())
.unwrap();
let dma_stream =
DmaStream::map(segment.clone().into(), DmaDirection::Bidirectional, true).unwrap();
assert!(dma_stream.paddr() == segment.start_paddr());
}
#[ktest]
fn duplicate_map() {
let segment_parent = FrameAllocOptions::new()
.alloc_segment_with(2, |_| ())
.unwrap();
let segment_child = segment_parent.slice(&(0..PAGE_SIZE));
let dma_stream_parent =
DmaStream::map(segment_parent.into(), DmaDirection::Bidirectional, false);
let dma_stream_child =
DmaStream::map(segment_child.into(), DmaDirection::Bidirectional, false);
assert!(dma_stream_parent.is_ok());
assert!(dma_stream_child.is_err());
}
#[ktest]
fn read_and_write() {
let segment = FrameAllocOptions::new()
.alloc_segment_with(2, |_| ())
.unwrap();
let dma_stream =
DmaStream::map(segment.into(), DmaDirection::Bidirectional, false).unwrap();
let buf_write = vec![1u8; 2 * PAGE_SIZE];
dma_stream.write_bytes(0, &buf_write).unwrap();
dma_stream.sync(0..2 * PAGE_SIZE).unwrap();
let mut buf_read = vec![0u8; 2 * PAGE_SIZE];
dma_stream.read_bytes(0, &mut buf_read).unwrap();
assert_eq!(buf_write, buf_read);
}
#[ktest]
fn reader_and_writer() {
let segment = FrameAllocOptions::new()
.alloc_segment_with(2, |_| ())
.unwrap();
let dma_stream =
DmaStream::map(segment.into(), DmaDirection::Bidirectional, false).unwrap();
let buf_write = vec![1u8; PAGE_SIZE];
let mut writer = dma_stream.writer().unwrap();
writer.write(&mut buf_write.as_slice().into());
writer.write(&mut buf_write.as_slice().into());
dma_stream.sync(0..2 * PAGE_SIZE).unwrap();
let mut buf_read = vec![0u8; 2 * PAGE_SIZE];
let buf_write = vec![1u8; 2 * PAGE_SIZE];
let mut reader = dma_stream.reader().unwrap();
reader.read(&mut buf_read.as_mut_slice().into());
assert_eq!(buf_read, buf_write);
}
}