Files
asterinas/services/libs/jinux-std/src/vm/vmo/mod.rs

391 lines
13 KiB
Rust

//! Virtual Memory Objects (VMOs).
use core::ops::Range;
use align_ext::AlignExt;
use jinux_frame::vm::{VmAllocOptions, VmFrame, VmFrameVec, VmIo};
use jinux_rights::Rights;
use crate::prelude::*;
mod dyn_cap;
mod options;
mod pager;
mod static_cap;
pub use options::{VmoChildOptions, VmoOptions};
pub use pager::Pager;
/// Virtual Memory Objects (VMOs) are a type of capability that represents a
/// range of memory pages.
///
/// # Features
///
/// * **I/O interface.** A VMO provides read and write methods to access the
/// memory pages that it contain.
/// * **On-demand paging.** The memory pages of a VMO (except for _contiguous_
/// VMOs) are allocated lazily when the page is first accessed.
/// * **Tree structure.** Given a VMO, one can create a child VMO from it.
/// The child VMO can only access a subset of the parent's memory,
/// which is a good thing for the perspective of access control.
/// * **Copy-on-write (COW).** A child VMO may be created with COW semantics,
/// which prevents any writes on the child from affecting the parent
/// by duplicating memory pages only upon the first writes.
/// * **Access control.** As capabilities, VMOs restrict the
/// accessible range of memory and the allowed I/O operations.
/// * **Device driver support.** If specified upon creation, VMOs will be
/// backed by physically contiguous memory pages starting at a target address.
/// * **File system support.** By default, a VMO's memory pages are initially
/// all zeros. But if a VMO is attached to a pager (`Pager`) upon creation,
/// then its memory pages will be populated by the pager.
/// With this pager mechanism, file systems can easily implement page caches
/// with VMOs by attaching the VMOs to pagers backed by inodes.
///
/// # Capabilities
///
/// As a capability, each VMO is associated with a set of access rights,
/// whose semantics are explained below.
///
/// * The Dup right allows duplicating a VMO and creating children out of
/// a VMO.
/// * The Read, Write, Exec rights allow creating memory mappings with
/// readable, writable, and executable access permissions, respectively.
/// * The Read and Write rights allow the VMO to be read from and written to
/// directly.
/// * The Write right allows resizing a resizable VMO.
///
/// VMOs are implemented with two flavors of capabilities:
/// the dynamic one (`Vmo<Rights>`) and the static one (`Vmo<R: TRights>).
///
/// # Examples
///
/// For creating root VMOs, see `VmoOptions`.`
///
/// For creating child VMOs, see `VmoChildOptions`.
///
/// # Implementation
///
/// `Vmo` provides high-level APIs for address space management by wrapping
/// around its low-level counterpart `jinux_frame::vm::VmFrames`.
/// Compared with `VmFrames`,
/// `Vmo` is easier to use (by offering more powerful APIs) and
/// harder to misuse (thanks to its nature of being capability).
///
pub struct Vmo<R = Rights>(pub(super) Arc<Vmo_>, R);
/// Functions exist both for static capbility and dynamic capibility
pub trait VmoRightsOp {
/// Returns the access rights.
fn rights(&self) -> Rights;
/// Check whether rights is included in self
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
} else {
return_errno_with_message!(Errno::EINVAL, "vmo rights check failed");
}
}
/// Converts to a dynamic capability.
fn to_dyn(self) -> Vmo<Rights>
where
Self: Sized;
}
// We implement this trait for Vmo, so we can use functions on type like Vmo<R> without trait bounds.
// FIXME: This requires the imcomplete feature specialization, which should be fixed further.
impl<R> VmoRightsOp for Vmo<R> {
default fn rights(&self) -> Rights {
unimplemented!()
}
default fn to_dyn(self) -> Vmo<Rights>
where
Self: Sized,
{
unimplemented!()
}
}
bitflags! {
/// VMO flags.
pub struct VmoFlags: u32 {
/// Set this flag if a VMO is resizable.
const RESIZABLE = 1 << 0;
/// Set this flags if a VMO is backed by physically contiguous memory
/// pages.
///
/// To ensure the memory pages to be contiguous, these pages
/// are allocated upon the creation of the VMO, rather than on demands.
const CONTIGUOUS = 1 << 1;
/// Set this flag if a VMO is backed by memory pages that supports
/// Direct Memory Access (DMA) by devices.
const DMA = 1 << 2;
}
}
pub(super) struct Vmo_ {
/// Flags
flags: VmoFlags,
/// VmoInner
inner: Mutex<VmoInner>,
}
struct VmoInner {
pager: Option<Arc<dyn Pager>>,
/// size, in bytes
size: usize,
/// The pages committed. The key is the page index, the value is the committed frame.
committed_pages: BTreeMap<usize, VmFrame>,
/// The pages from the parent that current vmo can access. The pages can only be inherited when create childs vmo.
/// We store the page index range
inherited_pages: Option<Vec<VmFrame>>,
/// Whether the vmo is copy on write child.
is_cow: bool,
}
impl VmoInner {
fn commit_page(&mut self, offset: usize) -> Result<()> {
let page_idx = offset / PAGE_SIZE;
// Fast path: the page is already committed.
if self.committed_pages.contains_key(&page_idx) {
return Ok(());
}
let frame = match &self.pager {
None => VmAllocOptions::new(1).alloc_single()?,
Some(pager) => pager.commit_page(offset)?,
};
self.insert_frame(page_idx, frame);
Ok(())
}
fn decommit_page(&mut self, offset: usize) -> Result<()> {
let page_idx = offset / PAGE_SIZE;
if self.committed_pages.remove(&page_idx).is_some() {
if let Some(pager) = &self.pager {
pager.decommit_page(offset)?;
}
}
Ok(())
}
fn insert_frame(&mut self, page_idx: usize, frame: VmFrame) {
debug_assert!(!self.committed_pages.contains_key(&page_idx));
self.committed_pages.insert(page_idx, frame);
}
fn get_committed_frame(&mut self, page_idx: usize, write_page: bool) -> Result<VmFrame> {
// if the page is already commit, return the committed page.
if let Some(frames) = self.committed_pages.get(&page_idx) {
return Ok(frames.clone());
}
// The vmo is not child
if self.inherited_pages.is_none() {
self.commit_page(page_idx * PAGE_SIZE)?;
let frame = self.committed_pages.get(&page_idx).unwrap().clone();
return Ok(frame);
}
let frame = self.get_inherited_frame_or_alloc(page_idx, write_page)?;
if !self.should_share_frame_with_parent(write_page) {
self.insert_frame(page_idx, frame.clone());
}
Ok(frame)
}
fn get_inherited_frame_or_alloc(&self, page_idx: usize, write_page: bool) -> Result<VmFrame> {
let inherited_frames = self.inherited_pages.as_ref().unwrap();
if page_idx >= inherited_frames.len() {
if self.is_cow {
return Ok(VmAllocOptions::new(1).alloc_single()?);
}
return_errno_with_message!(Errno::EINVAL, "the page is not inherited from parent");
}
let inherited_frame = inherited_frames.get(page_idx).unwrap().clone();
if self.should_share_frame_with_parent(write_page) {
return Ok(inherited_frame);
}
let frame = VmAllocOptions::new(1).alloc_single()?;
frame.copy_from_frame(&inherited_frame);
Ok(frame)
}
fn is_cow_child(&self) -> bool {
self.is_cow
}
fn should_share_frame_with_parent(&self, write_page: bool) -> bool {
!self.is_cow || !write_page
}
}
impl Vmo_ {
pub fn commit_page(&self, offset: usize) -> Result<()> {
self.inner.lock().commit_page(offset)
}
pub fn decommit_page(&self, offset: usize) -> Result<()> {
self.inner.lock().decommit_page(offset)
}
pub fn commit(&self, range: Range<usize>) -> Result<()> {
let page_idx_range = get_page_idx_range(&range);
for page_idx in page_idx_range {
let offset = page_idx * PAGE_SIZE;
self.commit_page(offset)?;
}
Ok(())
}
pub fn decommit(&self, range: Range<usize>) -> Result<()> {
let page_idx_range = get_page_idx_range(&range);
for page_idx in page_idx_range {
let offset = page_idx * PAGE_SIZE;
self.decommit_page(offset)?;
}
Ok(())
}
/// determine whether a page is commited
pub fn page_commited(&self, page_idx: usize) -> bool {
self.inner.lock().committed_pages.contains_key(&page_idx)
}
pub fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
let read_len = buf.len();
if offset + read_len > self.size() {
return_errno_with_message!(Errno::EINVAL, "read range exceeds vmo size");
}
let read_range = offset..(offset + read_len);
let frames = self.ensure_all_pages_exist(&read_range, false)?;
let read_offset = offset % PAGE_SIZE;
Ok(frames.read_bytes(read_offset, buf)?)
}
/// Ensure all pages inside range are backed up vm frames, returns the frames.
fn ensure_all_pages_exist(&self, range: &Range<usize>, write_page: bool) -> Result<VmFrameVec> {
let page_idx_range = get_page_idx_range(range);
let mut frames = VmFrameVec::new_with_capacity(page_idx_range.len());
for page_idx in page_idx_range {
let page_frame = self.get_committed_frame(page_idx, write_page)?;
frames.push(page_frame);
}
Ok(frames)
}
/// Get the frame for a page. If commit_if_none is set, we will commit a new page for the page
/// if the page is not committed.
fn get_committed_frame(&self, page_idx: usize, write_page: bool) -> Result<VmFrame> {
self.inner.lock().get_committed_frame(page_idx, write_page)
}
pub fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
let write_len = buf.len();
debug_assert!(offset + write_len <= self.size());
if offset + write_len > self.size() {
return_errno_with_message!(Errno::EINVAL, "write range exceeds the vmo size");
}
let write_range = offset..(offset + write_len);
let frames = self.ensure_all_pages_exist(&write_range, true)?;
let write_offset = offset % PAGE_SIZE;
frames.write_bytes(write_offset, buf)?;
if let Some(pager) = &self.inner.lock().pager {
let page_idx_range = get_page_idx_range(&write_range);
for page_idx in page_idx_range {
pager.update_page(page_idx * PAGE_SIZE)?;
}
}
Ok(())
}
pub fn clear(&self, range: Range<usize>) -> Result<()> {
let buffer = vec![0u8; range.end - range.start];
self.write_bytes(range.start, &buffer)
}
pub fn size(&self) -> usize {
self.inner.lock().size
}
pub fn resize(&self, new_size: usize) -> Result<()> {
assert!(self.flags.contains(VmoFlags::RESIZABLE));
let new_size = new_size.align_up(PAGE_SIZE);
let old_size = self.size();
if new_size == old_size {
return Ok(());
}
if new_size < old_size {
self.decommit(new_size..old_size)?;
self.inner.lock().size = new_size;
} else {
self.inner.lock().size = new_size;
}
Ok(())
}
pub fn flags(&self) -> VmoFlags {
self.flags
}
}
impl<R> Vmo<R> {
/// Returns the size (in bytes) of a VMO.
pub fn size(&self) -> usize {
self.0.size()
}
/// Returns the flags of a VMO.
pub fn flags(&self) -> VmoFlags {
self.0.flags()
}
/// return whether a page is already committed
pub fn is_page_committed(&self, page_idx: usize) -> bool {
self.0.page_commited(page_idx)
}
pub fn get_committed_frame(&self, page_idx: usize, write_page: bool) -> Result<VmFrame> {
self.0.get_committed_frame(page_idx, write_page)
}
pub fn is_cow_child(&self) -> bool {
self.0.inner.lock().is_cow_child()
}
}
/// get the page index range that contains the offset range of vmo
pub fn get_page_idx_range(vmo_offset_range: &Range<usize>) -> Range<usize> {
let start = vmo_offset_range.start.align_down(PAGE_SIZE);
let end = vmo_offset_range.end.align_up(PAGE_SIZE);
(start / PAGE_SIZE)..(end / PAGE_SIZE)
}
pub(super) fn get_inherited_frames_from_parent(
parent: Arc<Vmo_>,
num_pages: usize,
parent_page_idx_offset: usize,
is_cow: bool,
) -> Vec<VmFrame> {
let mut inherited_frames = Vec::with_capacity(num_pages);
for page_idx in 0..num_pages {
let parent_page_idx = page_idx + parent_page_idx_offset;
let inherited_frame = parent
.get_committed_frame(parent_page_idx, !is_cow)
.unwrap();
inherited_frames.push(inherited_frame);
}
inherited_frames
}