Files
asterinas/framework/aster-frame/src/task/task.rs
2024-03-19 16:19:54 +08:00

325 lines
9.4 KiB
Rust

// SPDX-License-Identifier: MPL-2.0
use intrusive_collections::{intrusive_adapter, LinkedListAtomicLink};
use super::{
add_task,
priority::Priority,
processor::{current_task, schedule},
};
use crate::{
arch::mm::PageTableFlags,
cpu::CpuSet,
prelude::*,
sync::{Mutex, MutexGuard},
user::UserSpace,
vm::{page_table::KERNEL_PAGE_TABLE, VmAllocOptions, VmSegment, PAGE_SIZE},
};
pub const KERNEL_STACK_SIZE: usize = PAGE_SIZE * 64;
core::arch::global_asm!(include_str!("switch.S"));
#[derive(Debug, Default, Clone, Copy)]
#[repr(C)]
pub struct CalleeRegs {
pub rsp: u64,
pub rbx: u64,
pub rbp: u64,
pub r12: u64,
pub r13: u64,
pub r14: u64,
pub r15: u64,
}
#[derive(Debug, Default, Clone, Copy)]
#[repr(C)]
pub(crate) struct TaskContext {
pub regs: CalleeRegs,
pub rip: usize,
}
extern "C" {
pub(crate) fn context_switch(cur: *mut TaskContext, nxt: *const TaskContext);
}
pub struct KernelStack {
segment: VmSegment,
old_guard_page_flag: Option<PageTableFlags>,
}
impl KernelStack {
pub fn new() -> Result<Self> {
Ok(Self {
segment: VmAllocOptions::new(KERNEL_STACK_SIZE / PAGE_SIZE)
.is_contiguous(true)
.alloc_contiguous()?,
old_guard_page_flag: None,
})
}
/// Generate a kernel stack with a guard page.
/// An additional page is allocated and be regarded as a guard page, which should not be accessed.
pub fn new_with_guard_page() -> Result<Self> {
let stack_segment = VmAllocOptions::new(KERNEL_STACK_SIZE / PAGE_SIZE + 1)
.is_contiguous(true)
.alloc_contiguous()?;
let unpresent_flag = PageTableFlags::empty();
let old_guard_page_flag = Self::protect_guard_page(&stack_segment, unpresent_flag);
Ok(Self {
segment: stack_segment,
old_guard_page_flag: Some(old_guard_page_flag),
})
}
pub fn end_paddr(&self) -> Paddr {
self.segment.end_paddr()
}
pub fn has_guard_page(&self) -> bool {
self.old_guard_page_flag.is_some()
}
fn protect_guard_page(stack_segment: &VmSegment, flags: PageTableFlags) -> PageTableFlags {
let mut kernel_pt = KERNEL_PAGE_TABLE.get().unwrap().lock();
let guard_page_vaddr = {
let guard_page_paddr = stack_segment.start_paddr();
crate::vm::paddr_to_vaddr(guard_page_paddr)
};
// Safety: The protected address must be the address of guard page hence it should be safe and valid.
unsafe { kernel_pt.protect(guard_page_vaddr, flags).unwrap() }
}
}
impl Drop for KernelStack {
fn drop(&mut self) {
if self.has_guard_page() {
Self::protect_guard_page(&self.segment, self.old_guard_page_flag.unwrap());
}
}
}
/// A task that executes a function to the end.
pub struct Task {
func: Box<dyn Fn() + Send + Sync>,
data: Box<dyn Any + Send + Sync>,
user_space: Option<Arc<UserSpace>>,
task_inner: Mutex<TaskInner>,
exit_code: usize,
/// kernel stack, note that the top is SyscallFrame/TrapFrame
kstack: KernelStack,
link: LinkedListAtomicLink,
priority: Priority,
// TODO:: add multiprocessor support
cpu_affinity: CpuSet,
}
// TaskAdapter struct is implemented for building relationships between doubly linked list and Task struct
intrusive_adapter!(pub TaskAdapter = Arc<Task>: Task { link: LinkedListAtomicLink });
pub(crate) struct TaskInner {
pub task_status: TaskStatus,
pub ctx: TaskContext,
}
impl Task {
/// Gets the current task.
pub fn current() -> Arc<Task> {
current_task().unwrap()
}
/// get inner
pub(crate) fn inner_exclusive_access(&self) -> MutexGuard<'_, TaskInner> {
self.task_inner.lock()
}
/// get inner
pub(crate) fn inner_ctx(&self) -> TaskContext {
self.task_inner.lock().ctx
}
/// Yields execution so that another task may be scheduled.
///
/// Note that this method cannot be simply named "yield" as the name is
/// a Rust keyword.
pub fn yield_now() {
schedule();
}
pub fn run(self: &Arc<Self>) {
add_task(self.clone());
schedule();
}
/// Returns the task status.
pub fn status(&self) -> TaskStatus {
self.task_inner.lock().task_status
}
/// Returns the task data.
pub fn data(&self) -> &Box<dyn Any + Send + Sync> {
&self.data
}
/// Returns the user space of this task, if it has.
pub fn user_space(&self) -> Option<&Arc<UserSpace>> {
if self.user_space.is_some() {
Some(self.user_space.as_ref().unwrap())
} else {
None
}
}
pub fn exit(&self) -> ! {
self.inner_exclusive_access().task_status = TaskStatus::Exited;
schedule();
unreachable!()
}
pub fn is_real_time(&self) -> bool {
self.priority.is_real_time()
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
/// The status of a task.
pub enum TaskStatus {
/// The task is runnable.
Runnable,
/// The task is sleeping.
Sleeping,
/// The task has exited.
Exited,
}
/// Options to create or spawn a new task.
pub struct TaskOptions {
func: Option<Box<dyn Fn() + Send + Sync>>,
data: Option<Box<dyn Any + Send + Sync>>,
user_space: Option<Arc<UserSpace>>,
priority: Priority,
cpu_affinity: CpuSet,
}
impl TaskOptions {
/// Creates a set of options for a task.
pub fn new<F>(func: F) -> Self
where
F: Fn() + Send + Sync + 'static,
{
let cpu_affinity = CpuSet::new_full();
Self {
func: Some(Box::new(func)),
data: None,
user_space: None,
priority: Priority::normal(),
cpu_affinity,
}
}
pub fn func<F>(mut self, func: F) -> Self
where
F: Fn() + Send + Sync + 'static,
{
self.func = Some(Box::new(func));
self
}
pub fn data<T>(mut self, data: T) -> Self
where
T: Any + Send + Sync,
{
self.data = Some(Box::new(data));
self
}
/// Sets the user space associated with the task.
pub fn user_space(mut self, user_space: Option<Arc<UserSpace>>) -> Self {
self.user_space = user_space;
self
}
/// Sets the priority of the task.
pub fn priority(mut self, priority: Priority) -> Self {
self.priority = priority;
self
}
pub fn cpu_affinity(mut self, cpu_affinity: CpuSet) -> Self {
self.cpu_affinity = cpu_affinity;
self
}
/// Builds a new task but not run it immediately.
pub fn build(self) -> Result<Arc<Task>> {
/// all task will entering this function
/// this function is mean to executing the task_fn in Task
fn kernel_task_entry() {
let current_task = current_task()
.expect("no current task, it should have current task in kernel task entry");
current_task.func.call(());
current_task.exit();
}
let result = Task {
func: self.func.unwrap(),
data: self.data.unwrap(),
user_space: self.user_space,
task_inner: Mutex::new(TaskInner {
task_status: TaskStatus::Runnable,
ctx: TaskContext::default(),
}),
exit_code: 0,
kstack: KernelStack::new_with_guard_page()?,
link: LinkedListAtomicLink::new(),
priority: self.priority,
cpu_affinity: self.cpu_affinity,
};
result.task_inner.lock().task_status = TaskStatus::Runnable;
result.task_inner.lock().ctx.rip = kernel_task_entry as usize;
result.task_inner.lock().ctx.regs.rsp =
(crate::vm::paddr_to_vaddr(result.kstack.end_paddr())) as u64;
Ok(Arc::new(result))
}
/// Builds a new task and run it immediately.
///
/// Each task is associated with a per-task data and an optional user space.
/// If having a user space, then the task can switch to the user space to
/// execute user code. Multiple tasks can share a single user space.
pub fn spawn(self) -> Result<Arc<Task>> {
/// all task will entering this function
/// this function is mean to executing the task_fn in Task
fn kernel_task_entry() {
let current_task = current_task()
.expect("no current task, it should have current task in kernel task entry");
current_task.func.call(());
current_task.exit();
}
let result = Task {
func: self.func.unwrap(),
data: self.data.unwrap(),
user_space: self.user_space,
task_inner: Mutex::new(TaskInner {
task_status: TaskStatus::Runnable,
ctx: TaskContext::default(),
}),
exit_code: 0,
kstack: KernelStack::new_with_guard_page()?,
link: LinkedListAtomicLink::new(),
priority: self.priority,
cpu_affinity: self.cpu_affinity,
};
result.task_inner.lock().task_status = TaskStatus::Runnable;
result.task_inner.lock().ctx.rip = kernel_task_entry as usize;
result.task_inner.lock().ctx.regs.rsp =
(crate::vm::paddr_to_vaddr(result.kstack.end_paddr())) as u64;
let arc_self = Arc::new(result);
arc_self.run();
Ok(arc_self)
}
}