mirror of
https://github.com/asterinas/asterinas.git
synced 2025-06-22 00:43:24 +00:00
In this commit, the frame metadata storage schema is implemented. The bootstrap process is refactored and a boot page table is introduced to perform early stage metadata mapping. The metadata is then used to track `VmFrame`s instead of the former `Arc` approach.
610 lines
23 KiB
Rust
610 lines
23 KiB
Rust
// SPDX-License-Identifier: MPL-2.0
|
|
|
|
//! The page table cursor for mapping and querying over the page table.
|
|
//!
|
|
//! ## The page table lock protocol
|
|
//!
|
|
//! We provide a fine-grained lock protocol to allow concurrent accesses to
|
|
//! the page table. The protocol is originally proposed by Ruihan Li
|
|
//! <lrh2000@pku.edu.cn>.
|
|
//!
|
|
//! [`CursorMut::new`] accepts an address range, which indicates the page table
|
|
//! entries that may be visited by this cursor.
|
|
//!
|
|
//! Then, [`CursorMut::new`] finds an intermediate page table (not necessarily
|
|
//! the last-level or the top-level) which represents an address range that contains
|
|
//! the whole specified address range. It requires all locks from the root page
|
|
//! table to the intermediate page table, but then unlocks all locks excluding the
|
|
//! one for the intermediate page table. CursorMut then maintains the lock
|
|
//! guards from one for the intermediate page table to the leaf that the cursor is
|
|
//! currently manipulating.
|
|
//!
|
|
//! For example, if we're going to map the address range shown below:
|
|
//!
|
|
//! ```plain
|
|
//! Top-level page table node A
|
|
//! /
|
|
//! B
|
|
//! / \
|
|
//! Last-level page table nodes C D
|
|
//! Last-level PTEs ---**...**---
|
|
//! \__ __/
|
|
//! V
|
|
//! Address range that we're going to map
|
|
//! ```
|
|
//!
|
|
//! When calling [`CursorMut::new`], it will:
|
|
//! 1. `lock(A)`, `lock(B)`, `unlock(A)`;
|
|
//! 2. `guards = [ locked(B) ]`.
|
|
//!
|
|
//! When calling [`CursorMut::map`], it will:
|
|
//! 1. `lock(C)`, `guards = [ locked(B), locked(C) ]`;
|
|
//! 2. Map some pages in `C`;
|
|
//! 3. `unlock(C)`, `lock_guard = [ locked(B) ]`;
|
|
//! 4. `lock(D)`, `lock_guard = [ locked(B), locked(D) ]`;
|
|
//! 5. Map some pages in D;
|
|
//! 6. `unlock(D)`, `lock_guard = [ locked(B) ]`;
|
|
//!
|
|
//! If all the mappings in `B` are cancelled when cursor finished it's traversal,
|
|
//! and `B` need to be recycled, a page walk from the root page table to `B` is
|
|
//! required. The cursor unlock all locks, then lock all the way down to `B`, then
|
|
//! check if `B` is empty, and finally recycle all the resources on the way back.
|
|
|
|
use alloc::sync::Arc;
|
|
use core::{any::TypeId, ops::Range};
|
|
|
|
use align_ext::AlignExt;
|
|
|
|
use super::{
|
|
nr_subpage_per_huge, page_size, pte_index, Child, KernelMode, PageTable, PageTableEntryTrait,
|
|
PageTableError, PageTableFrame, PageTableMode, PagingConstsTrait,
|
|
};
|
|
use crate::{
|
|
sync::{ArcSpinLockGuard, SpinLock},
|
|
vm::{Paddr, PageProperty, PagingLevel, Vaddr, VmFrame},
|
|
};
|
|
|
|
/// The cursor for traversal over the page table.
|
|
///
|
|
/// Efficient methods are provided to move the cursor forward by a slot,
|
|
/// doing mapping, unmaping, or querying for the traversed slot. Also you
|
|
/// can jump forward or backward by re-walking without releasing the lock.
|
|
///
|
|
/// A slot is a PTE at any levels, which correspond to a certain virtual
|
|
/// memory range sized by the "page size" of the current level.
|
|
///
|
|
/// Doing mapping is somewhat like a depth-first search on a tree, except
|
|
/// that we modify the tree while traversing it. We use a guard stack to
|
|
/// simulate the recursion, and adpot a page table locking protocol to
|
|
/// provide concurrency.
|
|
pub(crate) struct CursorMut<'a, M: PageTableMode, E: PageTableEntryTrait, C: PagingConstsTrait>
|
|
where
|
|
[(); nr_subpage_per_huge::<C>()]:,
|
|
[(); C::NR_LEVELS as usize]:,
|
|
{
|
|
pt: &'a PageTable<M, E, C>,
|
|
guards: [Option<ArcSpinLockGuard<PageTableFrame<E, C>>>; C::NR_LEVELS as usize],
|
|
level: PagingLevel, // current level
|
|
guard_level: PagingLevel, // from guard_level to level, the locks are held
|
|
va: Vaddr, // current virtual address
|
|
barrier_va: Range<Vaddr>, // virtual address range that is locked
|
|
}
|
|
|
|
impl<'a, M: PageTableMode, E: PageTableEntryTrait, C: PagingConstsTrait> CursorMut<'a, M, E, C>
|
|
where
|
|
[(); nr_subpage_per_huge::<C>()]:,
|
|
[(); C::NR_LEVELS as usize]:,
|
|
{
|
|
/// Create a cursor exclusively owning the locks for the given range.
|
|
///
|
|
/// The cursor created will only be able to map, query or jump within the
|
|
/// given range.
|
|
pub(crate) fn new(
|
|
pt: &'a PageTable<M, E, C>,
|
|
va: &Range<Vaddr>,
|
|
) -> Result<Self, PageTableError> {
|
|
if !M::covers(va) {
|
|
return Err(PageTableError::InvalidVaddrRange(va.start, va.end));
|
|
}
|
|
if va.start % C::BASE_PAGE_SIZE != 0 || va.end % C::BASE_PAGE_SIZE != 0 {
|
|
return Err(PageTableError::UnalignedVaddr);
|
|
}
|
|
// Create a guard array that only hold the root node lock.
|
|
let guards = core::array::from_fn(|i| {
|
|
if i == 0 {
|
|
Some(pt.root_frame.lock_arc())
|
|
} else {
|
|
None
|
|
}
|
|
});
|
|
let mut cursor = Self {
|
|
pt,
|
|
guards,
|
|
level: C::NR_LEVELS,
|
|
guard_level: C::NR_LEVELS,
|
|
va: va.start,
|
|
barrier_va: va.clone(),
|
|
};
|
|
// Go down and get proper locks. The cursor should hold a lock of a
|
|
// page table node containing the virtual address range.
|
|
//
|
|
// While going down, previous guards of too-high levels will be released.
|
|
loop {
|
|
let level_too_high = {
|
|
let start_idx = pte_index::<C>(va.start, cursor.level);
|
|
let end_idx = pte_index::<C>(va.end - 1, cursor.level);
|
|
start_idx == end_idx
|
|
};
|
|
if !level_too_high || !cursor.cur_child().is_pt() {
|
|
break;
|
|
}
|
|
cursor.level_down(None);
|
|
cursor.guards[(C::NR_LEVELS - cursor.level) as usize - 1] = None;
|
|
cursor.guard_level -= 1;
|
|
}
|
|
Ok(cursor)
|
|
}
|
|
|
|
/// Jump to the given virtual address.
|
|
///
|
|
/// It panics if the address is out of the range where the cursor is required to operate,
|
|
/// or has bad alignment.
|
|
pub(crate) fn jump(&mut self, va: Vaddr) {
|
|
assert!(self.barrier_va.contains(&va));
|
|
assert!(va % C::BASE_PAGE_SIZE == 0);
|
|
loop {
|
|
let cur_node_start = self.va & !(page_size::<C>(self.level + 1) - 1);
|
|
let cur_node_end = cur_node_start + page_size::<C>(self.level + 1);
|
|
// If the address is within the current node, we can jump directly.
|
|
if cur_node_start <= va && va < cur_node_end {
|
|
self.va = va;
|
|
return;
|
|
}
|
|
// There is a corner case that the cursor is depleted, sitting at the start of the
|
|
// next node but the next node is not locked because the parent is not locked.
|
|
if self.va >= self.barrier_va.end && self.level == self.guard_level {
|
|
self.va = va;
|
|
return;
|
|
}
|
|
debug_assert!(self.level < self.guard_level);
|
|
self.level_up();
|
|
}
|
|
}
|
|
|
|
/// Map the range starting from the current address to a `VmFrame`.
|
|
///
|
|
/// # Panic
|
|
///
|
|
/// This function will panic if
|
|
/// - the virtual address range to be mapped is out of the range;
|
|
/// - it is already mapped to a huge page while the caller wants to map a smaller one.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The caller should ensure that the virtual range being mapped does
|
|
/// not affect kernel's memory safety.
|
|
pub(crate) unsafe fn map(&mut self, frame: VmFrame, prop: PageProperty) {
|
|
let end = self.va + C::BASE_PAGE_SIZE;
|
|
assert!(end <= self.barrier_va.end);
|
|
// Go down if not applicable.
|
|
while self.level > C::HIGHEST_TRANSLATION_LEVEL
|
|
|| self.va % page_size::<C>(self.level) != 0
|
|
|| self.va + page_size::<C>(self.level) > end
|
|
{
|
|
self.level_down(Some(prop));
|
|
continue;
|
|
}
|
|
// Map the current page.
|
|
let idx = self.cur_idx();
|
|
let level = self.level;
|
|
self.cur_node_mut()
|
|
.set_child(idx, Child::Frame(frame), Some(prop), level > 1);
|
|
self.move_forward();
|
|
}
|
|
|
|
/// Map the range starting from the current address to a physical address range.
|
|
///
|
|
/// The function will map as more huge pages as possible, and it will split
|
|
/// the huge pages into smaller pages if necessary. If the input range is
|
|
/// large, the resulting mappings may look like this (if very huge pages
|
|
/// supported):
|
|
///
|
|
/// ```text
|
|
/// start end
|
|
/// |----|----------------|--------------------------------|----|----|
|
|
/// base huge very huge base base
|
|
/// 4KiB 2MiB 1GiB 4KiB 4KiB
|
|
/// ```
|
|
///
|
|
/// In practice it is not suggested to use this method for safety and conciseness.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The caller should ensure that
|
|
/// - the range being mapped does not affect kernel's memory safety;
|
|
/// - the physical address to be mapped is valid and safe to use.
|
|
pub(crate) unsafe fn map_pa(&mut self, pa: &Range<Paddr>, prop: PageProperty) {
|
|
let end = self.va + pa.len();
|
|
let mut pa = pa.start;
|
|
assert!(end <= self.barrier_va.end);
|
|
while self.va < end {
|
|
// We ensure not mapping in reserved kernel shared tables or releasing it.
|
|
// Although it may be an invariant for all architectures and will be optimized
|
|
// out by the compiler since `C::NR_LEVELS - 1 > C::HIGHEST_TRANSLATION_LEVEL`.
|
|
let is_kernel_shared_node =
|
|
TypeId::of::<M>() == TypeId::of::<KernelMode>() && self.level >= C::NR_LEVELS - 1;
|
|
if self.level > C::HIGHEST_TRANSLATION_LEVEL
|
|
|| is_kernel_shared_node
|
|
|| self.va % page_size::<C>(self.level) != 0
|
|
|| self.va + page_size::<C>(self.level) > end
|
|
|| pa % page_size::<C>(self.level) != 0
|
|
{
|
|
self.level_down(Some(prop));
|
|
continue;
|
|
}
|
|
// Map the current page.
|
|
let idx = self.cur_idx();
|
|
let level = self.level;
|
|
self.cur_node_mut()
|
|
.set_child(idx, Child::Untracked(pa), Some(prop), level > 1);
|
|
pa += page_size::<C>(level);
|
|
self.move_forward();
|
|
}
|
|
}
|
|
|
|
/// Unmap the range starting from the current address with the given length of virtual address.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The caller should ensure that the range being unmapped does not affect kernel's memory safety.
|
|
///
|
|
/// # Panic
|
|
///
|
|
/// This function will panic if:
|
|
/// - the range to be unmapped is out of the range where the cursor is required to operate;
|
|
/// - the range covers only a part of a page.
|
|
pub(crate) unsafe fn unmap(&mut self, len: usize) {
|
|
let end = self.va + len;
|
|
assert!(end <= self.barrier_va.end);
|
|
assert!(end % C::BASE_PAGE_SIZE == 0);
|
|
while self.va < end {
|
|
// Skip if it is already invalid.
|
|
if self.cur_child().is_none() {
|
|
if self.va + page_size::<C>(self.level) > end {
|
|
break;
|
|
}
|
|
self.move_forward();
|
|
continue;
|
|
}
|
|
|
|
// We check among the conditions that may lead to a level down.
|
|
// We ensure not unmapping in reserved kernel shared tables or releasing it.
|
|
let is_kernel_shared_node =
|
|
TypeId::of::<M>() == TypeId::of::<KernelMode>() && self.level >= C::NR_LEVELS - 1;
|
|
if is_kernel_shared_node
|
|
|| self.va % page_size::<C>(self.level) != 0
|
|
|| self.va + page_size::<C>(self.level) > end
|
|
{
|
|
self.level_down(Some(PageProperty::new_absent()));
|
|
continue;
|
|
}
|
|
|
|
// Unmap the current page.
|
|
let idx = self.cur_idx();
|
|
self.cur_node_mut().set_child(idx, Child::None, None, false);
|
|
self.move_forward();
|
|
}
|
|
}
|
|
|
|
/// Apply the given operation to all the mappings within the range.
|
|
///
|
|
/// The funtction will return an error if it is not allowed to protect an invalid range and
|
|
/// it does so, or if the range to be protected only covers a part of a page.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The caller should ensure that the range being protected does not affect kernel's memory safety.
|
|
///
|
|
/// # Panic
|
|
///
|
|
/// This function will panic if:
|
|
/// - the range to be protected is out of the range where the cursor is required to operate.
|
|
pub(crate) unsafe fn protect(
|
|
&mut self,
|
|
len: usize,
|
|
mut op: impl FnMut(&mut PageProperty),
|
|
allow_protect_invalid: bool,
|
|
) -> Result<(), PageTableError> {
|
|
let end = self.va + len;
|
|
assert!(end <= self.barrier_va.end);
|
|
while self.va < end {
|
|
if self.cur_child().is_none() {
|
|
if !allow_protect_invalid {
|
|
return Err(PageTableError::ProtectingInvalid);
|
|
}
|
|
self.move_forward();
|
|
continue;
|
|
}
|
|
// Go down if it's not a last node.
|
|
if self.cur_child().is_pt() {
|
|
self.level_down(None);
|
|
continue;
|
|
}
|
|
let vaddr_not_fit = self.va % page_size::<C>(self.level) != 0
|
|
|| self.va + page_size::<C>(self.level) > end;
|
|
let mut pte_prop = self.read_cur_pte_prop();
|
|
op(&mut pte_prop);
|
|
// Go down if the page size is too big and we are protecting part
|
|
// of untyped huge pages.
|
|
if self.cur_child().is_untyped() && vaddr_not_fit {
|
|
self.level_down(Some(pte_prop));
|
|
continue;
|
|
} else if vaddr_not_fit {
|
|
return Err(PageTableError::ProtectingPartial);
|
|
}
|
|
let idx = self.cur_idx();
|
|
let level = self.level;
|
|
self.cur_node_mut().protect(idx, pte_prop, level);
|
|
self.move_forward();
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Get the information of the current slot and move to the next slot.
|
|
pub(crate) fn query(&mut self) -> Option<PageTableQueryResult> {
|
|
if self.va >= self.barrier_va.end {
|
|
return None;
|
|
}
|
|
loop {
|
|
let level = self.level;
|
|
let va = self.va;
|
|
let map_prop = self.read_cur_pte_prop();
|
|
match self.cur_child().clone() {
|
|
Child::Frame(frame) => {
|
|
self.move_forward();
|
|
return Some(PageTableQueryResult::Mapped {
|
|
va,
|
|
frame,
|
|
prop: map_prop,
|
|
});
|
|
}
|
|
Child::PageTable(_) => {
|
|
// Go down if it's not a last node.
|
|
self.level_down(None);
|
|
continue;
|
|
}
|
|
Child::Untracked(pa) => {
|
|
self.move_forward();
|
|
return Some(PageTableQueryResult::MappedUntyped {
|
|
va,
|
|
pa,
|
|
len: page_size::<C>(level),
|
|
prop: map_prop,
|
|
});
|
|
}
|
|
Child::None => {
|
|
self.move_forward();
|
|
return Some(PageTableQueryResult::NotMapped {
|
|
va,
|
|
len: page_size::<C>(level),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Consume itself and leak the root guard for the caller if it locked the root level.
|
|
///
|
|
/// It is useful when the caller wants to keep the root guard while the cursor should be dropped.
|
|
pub(super) fn leak_root_guard(mut self) -> Option<ArcSpinLockGuard<PageTableFrame<E, C>>> {
|
|
if self.guard_level != C::NR_LEVELS {
|
|
return None;
|
|
}
|
|
while self.level < C::NR_LEVELS {
|
|
self.level_up();
|
|
}
|
|
self.guards[0].take()
|
|
// Ok to drop self here because we ensure not to access the page table if the current
|
|
// level is the root level when running the dropping method.
|
|
}
|
|
|
|
/// Traverse forward in the current level to the next PTE.
|
|
///
|
|
/// If reached the end of a page table frame, it leads itself up to the next frame of the parent
|
|
/// frame if possible.
|
|
fn move_forward(&mut self) {
|
|
let page_size = page_size::<C>(self.level);
|
|
let next_va = self.va.align_down(page_size) + page_size;
|
|
while self.level < self.guard_level && pte_index::<C>(next_va, self.level) == 0 {
|
|
self.level_up();
|
|
}
|
|
self.va = next_va;
|
|
}
|
|
|
|
/// Go up a level. We release the current frame if it has no mappings since the cursor only moves
|
|
/// forward. And if needed we will do the final cleanup using this method after re-walk when the
|
|
/// cursor is dropped.
|
|
///
|
|
/// This method requires locks acquired before calling it. The discarded level will be unlocked.
|
|
fn level_up(&mut self) {
|
|
#[cfg(feature = "page_table_recycle")]
|
|
let last_node_all_unmapped = self.cur_node().nr_valid_children() == 0;
|
|
self.guards[(C::NR_LEVELS - self.level) as usize] = None;
|
|
self.level += 1;
|
|
#[cfg(feature = "page_table_recycle")]
|
|
{
|
|
let can_release_child =
|
|
TypeId::of::<M>() == TypeId::of::<KernelMode>() && self.level < C::NR_LEVELS;
|
|
if can_release_child && last_node_all_unmapped {
|
|
let idx = self.cur_idx();
|
|
self.cur_node_mut().set_child(idx, Child::None, None, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A level down operation during traversal. It may create a new child frame if the
|
|
/// current frame does not have one. It may also split an untyped huge page into
|
|
/// smaller pages if we have an end address within the next mapped untyped huge page.
|
|
///
|
|
/// If creation may happen the map property of intermediate level `prop` should be
|
|
/// passed in correctly. Whether the map property matters in an intermediate
|
|
/// level is architecture-dependent.
|
|
///
|
|
/// Also, the staticness of the page table is guaranteed if the caller make sure
|
|
/// that there is a child node for the current node.
|
|
fn level_down(&mut self, prop: Option<PageProperty>) {
|
|
debug_assert!(self.level > 1);
|
|
// Check if the child frame exists.
|
|
let nxt_lvl_frame = {
|
|
let idx = pte_index::<C>(self.va, self.level);
|
|
let child = self.cur_child();
|
|
if let Child::PageTable(nxt_lvl_frame) = child {
|
|
Some(nxt_lvl_frame.clone())
|
|
} else {
|
|
None
|
|
}
|
|
};
|
|
// Create a new child frame if it does not exist. Sure it could be done only if
|
|
// it is allowed to modify the page table.
|
|
let nxt_lvl_frame = nxt_lvl_frame.unwrap_or_else(|| {
|
|
// If it already maps an untyped huge page, we should split it.
|
|
if self.cur_child().is_untyped() {
|
|
let level = self.level;
|
|
let idx = self.cur_idx();
|
|
self.cur_node_mut().split_untracked_huge(level, idx);
|
|
let Child::PageTable(nxt_lvl_frame) = self.cur_child() else {
|
|
unreachable!()
|
|
};
|
|
nxt_lvl_frame.clone()
|
|
} else if self.cur_child().is_none() {
|
|
let new_frame = Arc::new(SpinLock::new(PageTableFrame::<E, C>::new()));
|
|
let idx = self.cur_idx();
|
|
self.cur_node_mut().set_child(
|
|
idx,
|
|
Child::PageTable(new_frame.clone()),
|
|
prop,
|
|
false,
|
|
);
|
|
new_frame
|
|
} else {
|
|
panic!("Trying to level down when it is mapped to a typed frame");
|
|
}
|
|
});
|
|
self.guards[(C::NR_LEVELS - self.level) as usize + 1] = Some(nxt_lvl_frame.lock_arc());
|
|
self.level -= 1;
|
|
}
|
|
|
|
fn cur_node(&self) -> &ArcSpinLockGuard<PageTableFrame<E, C>> {
|
|
self.guards[(C::NR_LEVELS - self.level) as usize]
|
|
.as_ref()
|
|
.unwrap()
|
|
}
|
|
|
|
fn cur_node_mut(&mut self) -> &mut ArcSpinLockGuard<PageTableFrame<E, C>> {
|
|
self.guards[(C::NR_LEVELS - self.level) as usize]
|
|
.as_mut()
|
|
.unwrap()
|
|
}
|
|
|
|
fn cur_idx(&self) -> usize {
|
|
pte_index::<C>(self.va, self.level)
|
|
}
|
|
|
|
fn cur_child(&self) -> &Child<E, C> {
|
|
self.cur_node().child(self.cur_idx())
|
|
}
|
|
|
|
fn read_cur_pte_prop(&self) -> PageProperty {
|
|
self.cur_node().read_pte_prop(self.cur_idx())
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "page_table_recycle")]
|
|
impl<M: PageTableMode, E: PageTableEntryTrait, C: PagingConstsTrait> Drop for CursorMut<'_, M, E, C>
|
|
where
|
|
[(); nr_subpage_per_huge::<C>()]:,
|
|
[(); C::NR_LEVELS as usize]:,
|
|
{
|
|
fn drop(&mut self) {
|
|
// Recycle what we can recycle now.
|
|
while self.level < self.guard_level {
|
|
self.level_up();
|
|
}
|
|
// No need to do further cleanup if it is the root node or
|
|
// there are mappings left.
|
|
if self.level == self.guard_level || self.cur_node().nr_valid_children() != 0 {
|
|
return;
|
|
}
|
|
// Drop the lock on the guard level.
|
|
self.guards[C::NR_LEVELS - self.guard_level] = None;
|
|
// Re-walk the page table to retreive the locks.
|
|
self.guards[0] = Some(self.pt.root_frame.lock_arc());
|
|
self.level = C::NR_LEVELS;
|
|
// Another cursor can unmap the guard level node before this cursor
|
|
// is dropped, we can just do our best here when re-walking.
|
|
while self.level > self.guard_level && self.cur_child().is_pt() {
|
|
self.level_down(None);
|
|
}
|
|
// Doing final cleanup by [`CursorMut::level_up`] to the root.
|
|
while self.level < C::NR_LEVELS {
|
|
self.level_up();
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) enum PageTableQueryResult {
|
|
NotMapped {
|
|
va: Vaddr,
|
|
len: usize,
|
|
},
|
|
Mapped {
|
|
va: Vaddr,
|
|
frame: VmFrame,
|
|
prop: PageProperty,
|
|
},
|
|
MappedUntyped {
|
|
va: Vaddr,
|
|
pa: Paddr,
|
|
len: usize,
|
|
prop: PageProperty,
|
|
},
|
|
}
|
|
|
|
/// The read-only cursor for traversal over the page table.
|
|
///
|
|
/// It implements the `Iterator` trait to provide a convenient way to query over the page table.
|
|
pub(crate) struct Cursor<'a, M: PageTableMode, E: PageTableEntryTrait, C: PagingConstsTrait>
|
|
where
|
|
[(); nr_subpage_per_huge::<C>()]:,
|
|
[(); C::NR_LEVELS as usize]:,
|
|
{
|
|
inner: CursorMut<'a, M, E, C>,
|
|
}
|
|
|
|
impl<'a, M: PageTableMode, E: PageTableEntryTrait, C: PagingConstsTrait> Cursor<'a, M, E, C>
|
|
where
|
|
[(); nr_subpage_per_huge::<C>()]:,
|
|
[(); C::NR_LEVELS as usize]:,
|
|
{
|
|
pub(super) fn new(
|
|
pt: &'a PageTable<M, E, C>,
|
|
va: &Range<Vaddr>,
|
|
) -> Result<Self, PageTableError> {
|
|
CursorMut::new(pt, va).map(|inner| Self { inner })
|
|
}
|
|
}
|
|
|
|
impl<'a, M: PageTableMode, E: PageTableEntryTrait, C: PagingConstsTrait> Iterator
|
|
for Cursor<'a, M, E, C>
|
|
where
|
|
[(); nr_subpage_per_huge::<C>()]:,
|
|
[(); C::NR_LEVELS as usize]:,
|
|
{
|
|
type Item = PageTableQueryResult;
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
self.inner.query()
|
|
}
|
|
}
|