Files
asterinas/kernel/src/vm/vmo/mod.rs
2024-12-27 12:12:51 +08:00

458 lines
15 KiB
Rust

// SPDX-License-Identifier: MPL-2.0
#![allow(dead_code)]
#![allow(unused_variables)]
//! Virtual Memory Objects (VMOs).
use core::ops::Range;
use align_ext::AlignExt;
use aster_rights::Rights;
use ostd::{
collections::xarray::{CursorMut, XArray},
mm::{FrameAllocOptions, UFrame, UntypedMem, VmReader, VmWriter},
};
use crate::prelude::*;
mod dyn_cap;
mod options;
mod pager;
mod static_cap;
pub use options::VmoOptions;
pub use pager::Pager;
/// Virtual Memory Objects (VMOs) are a type of capability that represents a
/// range of memory pages.
///
/// # Features
///
/// * **I/O interface.** A VMO provides read and write methods to access the
/// memory pages that it contain.
/// * **On-demand paging.** The memory pages of a VMO (except for _contiguous_
/// VMOs) are allocated lazily when the page is first accessed.
/// * **Access control.** As capabilities, VMOs restrict the
/// accessible range of memory and the allowed I/O operations.
/// * **Device driver support.** If specified upon creation, VMOs will be
/// backed by physically contiguous memory pages starting at a target address.
/// * **File system support.** By default, a VMO's memory pages are initially
/// all zeros. But if a VMO is attached to a pager (`Pager`) upon creation,
/// then its memory pages will be populated by the pager.
/// With this pager mechanism, file systems can easily implement page caches
/// with VMOs by attaching the VMOs to pagers backed by inodes.
///
/// # Capabilities
///
/// As a capability, each VMO is associated with a set of access rights,
/// whose semantics are explained below.
///
/// * The Dup right allows duplicating a VMO and creating children out of
/// a VMO.
/// * The Read, Write, Exec rights allow creating memory mappings with
/// readable, writable, and executable access permissions, respectively.
/// * The Read and Write rights allow the VMO to be read from and written to
/// directly.
/// * The Write right allows resizing a resizable VMO.
///
/// VMOs are implemented with two flavors of capabilities:
/// the dynamic one (`Vmo<Rights>`) and the static one (`Vmo<R: TRights>).
///
/// # Examples
///
/// For creating root VMOs, see [`VmoOptions`].
///
/// # Implementation
///
/// `Vmo` provides high-level APIs for address space management by wrapping
/// around its low-level counterpart [`ostd::mm::UFrame`].
/// Compared with `UFrame`,
/// `Vmo` is easier to use (by offering more powerful APIs) and
/// harder to misuse (thanks to its nature of being capability).
#[derive(Debug)]
pub struct Vmo<R = Rights>(pub(super) Arc<Vmo_>, R);
/// Functions exist both for static capbility and dynamic capability
pub trait VmoRightsOp {
/// Returns the access rights.
fn rights(&self) -> Rights;
/// Check whether rights is included in self
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
} else {
return_errno_with_message!(Errno::EINVAL, "vmo rights check failed");
}
}
/// Converts to a dynamic capability.
fn to_dyn(self) -> Vmo<Rights>
where
Self: Sized;
}
// We implement this trait for VMO, so we can use functions on type like Vmo<R> without trait bounds.
// FIXME: This requires the incomplete feature specialization, which should be fixed further.
impl<R> VmoRightsOp for Vmo<R> {
default fn rights(&self) -> Rights {
unimplemented!()
}
default fn to_dyn(self) -> Vmo<Rights>
where
Self: Sized,
{
unimplemented!()
}
}
bitflags! {
/// VMO flags.
pub struct VmoFlags: u32 {
/// Set this flag if a VMO is resizable.
const RESIZABLE = 1 << 0;
/// Set this flags if a VMO is backed by physically contiguous memory
/// pages.
///
/// To ensure the memory pages to be contiguous, these pages
/// are allocated upon the creation of the VMO, rather than on demands.
const CONTIGUOUS = 1 << 1;
/// Set this flag if a VMO is backed by memory pages that supports
/// Direct Memory Access (DMA) by devices.
const DMA = 1 << 2;
}
}
/// `Pages` is the struct that manages the `UFrame`s stored in `Vmo_`.
pub(super) enum Pages {
/// `Pages` that cannot be resized. This kind of `Pages` will have a constant size.
Nonresizable(Mutex<XArray<UFrame>>, usize),
/// `Pages` that can be resized and have a variable size.
Resizable(Mutex<(XArray<UFrame>, usize)>),
}
impl Clone for Pages {
fn clone(&self) -> Self {
match self {
Self::Nonresizable(_, _) => {
self.with(|pages, size| Self::Nonresizable(Mutex::new(pages.clone()), size))
}
Self::Resizable(_) => {
self.with(|pages, size| Self::Resizable(Mutex::new((pages.clone(), size))))
}
}
}
}
impl Pages {
fn with<R, F>(&self, func: F) -> R
where
F: FnOnce(&mut XArray<UFrame>, usize) -> R,
{
match self {
Self::Nonresizable(pages, size) => func(&mut pages.lock(), *size),
Self::Resizable(pages) => {
let mut lock = pages.lock();
let size = lock.1;
func(&mut lock.0, size)
}
}
}
}
/// `Vmo_` is the structure that actually manages the content of VMO.
/// Broadly speaking, there are two types of VMO:
/// 1. File-backed VMO: the VMO backed by a file and resides in the `PageCache`,
/// which includes a pager to provide it with actual pages.
/// 2. Anonymous VMO: the VMO without a file backup, which does not have a pager.
#[derive(Clone)]
pub(super) struct Vmo_ {
pager: Option<Arc<dyn Pager>>,
/// Flags
flags: VmoFlags,
/// The virtual pages where the VMO resides.
pages: Pages,
}
impl Debug for Vmo_ {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("Vmo_")
.field("flags", &self.flags)
.field("size", &self.size())
.finish()
}
}
bitflags! {
/// Commit Flags.
pub struct CommitFlags: u8 {
/// Set this flag if the page will be completely overwritten.
/// This flag contains the WILL_WRITE flag.
const WILL_OVERWRITE = 1;
}
}
impl CommitFlags {
pub fn will_overwrite(&self) -> bool {
self.contains(Self::WILL_OVERWRITE)
}
}
impl Vmo_ {
/// Prepares a new `UFrame` for the target index in pages, returns this new frame.
fn prepare_page(&self, page_idx: usize) -> Result<UFrame> {
match &self.pager {
None => Ok(FrameAllocOptions::new().alloc_frame()?.into()),
Some(pager) => pager.commit_page(page_idx),
}
}
/// Prepares a new `UFrame` for the target index in the VMO, returns this new frame.
fn prepare_overwrite(&self, page_idx: usize) -> Result<UFrame> {
if let Some(pager) = &self.pager {
pager.commit_overwrite(page_idx)
} else {
Ok(FrameAllocOptions::new().alloc_frame()?.into())
}
}
fn commit_with_cursor(
&self,
cursor: &mut CursorMut<'_, UFrame>,
commit_flags: CommitFlags,
) -> Result<UFrame> {
let new_page = {
if let Some(committed_page) = cursor.load() {
// Fast path: return the page directly.
return Ok(committed_page.clone());
} else if commit_flags.will_overwrite() {
// In this case, the page will be completely overwritten.
self.prepare_overwrite(cursor.index() as usize)?
} else {
self.prepare_page(cursor.index() as usize)?
}
};
cursor.store(new_page.clone());
Ok(new_page)
}
/// Commits the page corresponding to the target offset in the VMO and return that page.
/// If the current offset has already been committed, the page will be returned directly.
pub fn commit_page(&self, offset: usize) -> Result<UFrame> {
let page_idx = offset / PAGE_SIZE;
self.pages.with(|pages, size| {
if offset >= size {
return_errno_with_message!(Errno::EINVAL, "the offset is outside the VMO");
}
let mut cursor = pages.cursor_mut(page_idx as u64);
self.commit_with_cursor(&mut cursor, CommitFlags::empty())
})
}
/// Decommits the page corresponding to the target offset in the VMO.
fn decommit_page(&mut self, offset: usize) -> Result<()> {
let page_idx = offset / PAGE_SIZE;
self.pages.with(|pages, size| {
if offset >= size {
return_errno_with_message!(Errno::EINVAL, "the offset is outside the VMO");
}
let mut cursor = pages.cursor_mut(page_idx as u64);
if cursor.remove().is_some()
&& let Some(pager) = &self.pager
{
pager.decommit_page(page_idx)?;
}
Ok(())
})
}
/// Traverses the indices within a specified range of a VMO sequentially.
/// For each index position, you have the option to commit the page as well as
/// perform other operations.
pub fn operate_on_range<F>(
&self,
range: &Range<usize>,
mut operate: F,
commit_flags: CommitFlags,
) -> Result<()>
where
F: FnMut(&mut dyn FnMut() -> Result<UFrame>) -> Result<()>,
{
self.pages.with(|pages, size| {
if range.end > size {
return_errno_with_message!(Errno::EINVAL, "operated range exceeds the vmo size");
}
let page_idx_range = get_page_idx_range(range);
let mut cursor = pages.cursor_mut(page_idx_range.start as u64);
for page_idx in page_idx_range {
let mut commit_fn = || self.commit_with_cursor(&mut cursor, commit_flags);
operate(&mut commit_fn)?;
cursor.next();
}
Ok(())
})
}
/// Decommits a range of pages in the VMO.
pub fn decommit(&self, range: Range<usize>) -> Result<()> {
self.pages.with(|pages, size| {
if range.end > size {
return_errno_with_message!(Errno::EINVAL, "operated range exceeds the vmo size");
}
self.decommit_pages(pages, range)?;
Ok(())
})
}
/// Reads the specified amount of buffer content starting from the target offset in the VMO.
pub fn read(&self, offset: usize, writer: &mut VmWriter) -> Result<()> {
let read_len = writer.avail().min(self.size().saturating_sub(offset));
let read_range = offset..(offset + read_len);
let mut read_offset = offset % PAGE_SIZE;
let read = move |commit_fn: &mut dyn FnMut() -> Result<UFrame>| {
let frame = commit_fn()?;
frame.reader().skip(read_offset).read_fallible(writer)?;
read_offset = 0;
Ok(())
};
self.operate_on_range(&read_range, read, CommitFlags::empty())
}
/// Writes the specified amount of buffer content starting from the target offset in the VMO.
pub fn write(&self, offset: usize, reader: &mut VmReader) -> Result<()> {
let write_len = reader.remain();
let write_range = offset..(offset + write_len);
let mut write_offset = offset % PAGE_SIZE;
let mut write = move |commit_fn: &mut dyn FnMut() -> Result<UFrame>| {
let frame = commit_fn()?;
frame.writer().skip(write_offset).write_fallible(reader)?;
write_offset = 0;
Ok(())
};
if write_range.len() < PAGE_SIZE {
self.operate_on_range(&write_range, write, CommitFlags::empty())?;
} else {
let temp = write_range.start + PAGE_SIZE - 1;
let up_align_start = temp - temp % PAGE_SIZE;
let down_align_end = write_range.end - write_range.end % PAGE_SIZE;
if write_range.start != up_align_start {
let head_range = write_range.start..up_align_start;
self.operate_on_range(&head_range, &mut write, CommitFlags::empty())?;
}
if up_align_start != down_align_end {
let mid_range = up_align_start..down_align_end;
self.operate_on_range(&mid_range, &mut write, CommitFlags::WILL_OVERWRITE)?;
}
if down_align_end != write_range.end {
let tail_range = down_align_end..write_range.end;
self.operate_on_range(&tail_range, &mut write, CommitFlags::empty())?;
}
}
if let Some(pager) = &self.pager {
let page_idx_range = get_page_idx_range(&write_range);
for page_idx in page_idx_range {
pager.update_page(page_idx)?;
}
}
Ok(())
}
/// Clears the target range in current VMO.
pub fn clear(&self, range: Range<usize>) -> Result<()> {
let buffer = vec![0u8; range.end - range.start];
let mut reader = VmReader::from(buffer.as_slice()).to_fallible();
self.write(range.start, &mut reader)?;
Ok(())
}
/// Returns the size of current VMO.
pub fn size(&self) -> usize {
self.pages.with(|_, size| size)
}
/// Resizes current VMO to target size.
pub fn resize(&self, new_size: usize) -> Result<()> {
assert!(self.flags.contains(VmoFlags::RESIZABLE));
let new_size = new_size.align_up(PAGE_SIZE);
let Pages::Resizable(ref pages) = self.pages else {
return_errno_with_message!(Errno::EINVAL, "current VMO is not resizable");
};
let mut lock = pages.lock();
let old_size = lock.1;
if new_size == old_size {
return Ok(());
}
if new_size < old_size {
self.decommit_pages(&mut lock.0, new_size..old_size)?;
}
lock.1 = new_size;
Ok(())
}
fn decommit_pages(&self, pages: &mut XArray<UFrame>, range: Range<usize>) -> Result<()> {
let page_idx_range = get_page_idx_range(&range);
let mut cursor = pages.cursor_mut(page_idx_range.start as u64);
for page_idx in page_idx_range {
if cursor.remove().is_some()
&& let Some(pager) = &self.pager
{
pager.decommit_page(page_idx)?;
}
cursor.next();
}
Ok(())
}
/// Determines whether a page is committed.
pub fn is_page_committed(&self, page_idx: usize) -> bool {
self.pages
.with(|pages, _| pages.load(page_idx as u64).is_some())
}
/// Returns the flags of current VMO.
pub fn flags(&self) -> VmoFlags {
self.flags
}
fn replace(&self, page: UFrame, page_idx: usize) -> Result<()> {
self.pages.with(|pages, size| {
if page_idx >= size / PAGE_SIZE {
return_errno_with_message!(Errno::EINVAL, "the page index is outside of the vmo");
}
pages.store(page_idx as u64, page);
Ok(())
})
}
}
impl<R> Vmo<R> {
/// Returns the size (in bytes) of a VMO.
pub fn size(&self) -> usize {
self.0.size()
}
/// Returns the flags of a VMO.
pub fn flags(&self) -> VmoFlags {
self.0.flags()
}
}
/// Gets the page index range that contains the offset range of VMO.
pub fn get_page_idx_range(vmo_offset_range: &Range<usize>) -> Range<usize> {
let start = vmo_offset_range.start.align_down(PAGE_SIZE);
let end = vmo_offset_range.end.align_up(PAGE_SIZE);
(start / PAGE_SIZE)..(end / PAGE_SIZE)
}