mirror of
https://github.com/asterinas/asterinas.git
synced 2025-06-29 04:13:24 +00:00
171 lines
5.7 KiB
Rust
171 lines
5.7 KiB
Rust
// SPDX-License-Identifier: MPL-2.0
|
|
|
|
//! The linux bzImage builder.
|
|
//!
|
|
//! This crate is responsible for building the bzImage. It contains methods to build
|
|
//! the setup binary (with source provided in another crate) and methods to build the
|
|
//! bzImage from the setup binary and the kernel ELF.
|
|
//!
|
|
//! We should build the asterinas kernel as an ELF file, and feed it to the builder to
|
|
//! generate the bzImage. The builder will generate the PE/COFF header for the setup
|
|
//! code and concatenate it to the ELF file to make the bzImage.
|
|
//!
|
|
//! The setup code should be built into the ELF target and we convert it to a flat binary
|
|
//! in the builder.
|
|
|
|
mod mapping;
|
|
mod pe_header;
|
|
|
|
use std::{
|
|
fs::File,
|
|
io::{Read, Seek, SeekFrom, Write},
|
|
path::Path,
|
|
};
|
|
|
|
use mapping::{SetupFileOffset, SetupVA};
|
|
use xmas_elf::program::SegmentData;
|
|
|
|
/// The type of the bzImage that we are building through `make_bzimage`.
|
|
///
|
|
/// Currently, Legacy32 and Efi64 are mutually exclusive.
|
|
pub enum BzImageType {
|
|
Legacy32,
|
|
Efi64,
|
|
}
|
|
|
|
/// Making a bzImage given the kernel ELF and setup source.
|
|
///
|
|
/// Explanations for the arguments:
|
|
/// - `target_image_path`: The path to the target bzImage;
|
|
/// - `image_type`: The type of the bzImage that we are building;
|
|
/// - `kernel_path`: The path to the kernel ELF;
|
|
/// - `setup_elf_path`: The path to the setup ELF.
|
|
///
|
|
pub fn make_bzimage(
|
|
target_image_path: &Path,
|
|
image_type: BzImageType,
|
|
kernel_path: &Path,
|
|
setup_elf_path: &Path,
|
|
) {
|
|
let mut setup_elf = Vec::new();
|
|
File::open(setup_elf_path)
|
|
.unwrap()
|
|
.read_to_end(&mut setup_elf)
|
|
.unwrap();
|
|
let mut setup = to_flat_binary(&setup_elf);
|
|
// Pad the header with 8-byte alignment.
|
|
setup.resize((setup.len() + 7) & !7, 0x00);
|
|
|
|
let mut kernel = Vec::new();
|
|
File::open(kernel_path)
|
|
.unwrap()
|
|
.read_to_end(&mut kernel)
|
|
.unwrap();
|
|
let payload = kernel;
|
|
|
|
let setup_len = setup.len();
|
|
let payload_len = payload.len();
|
|
let payload_offset = SetupFileOffset::from(setup_len);
|
|
fill_legacy_header_fields(&mut setup, payload_len, setup_len, payload_offset.into());
|
|
|
|
let mut kernel_image = File::create(target_image_path).unwrap();
|
|
kernel_image.write_all(&setup).unwrap();
|
|
kernel_image.write_all(&payload).unwrap();
|
|
|
|
let image_size = setup_len + payload_len;
|
|
|
|
if matches!(image_type, BzImageType::Efi64) {
|
|
// Write the PE/COFF header to the start of the file.
|
|
// Since the Linux boot header starts at 0x1f1, we can write the PE/COFF header directly to the
|
|
// start of the file without overwriting the Linux boot header.
|
|
let pe_header = pe_header::make_pe_coff_header(&setup_elf, image_size);
|
|
assert!(
|
|
pe_header.header_at_zero.len() <= 0x1f1,
|
|
"PE/COFF header is too large"
|
|
);
|
|
|
|
kernel_image.seek(SeekFrom::Start(0)).unwrap();
|
|
kernel_image.write_all(&pe_header.header_at_zero).unwrap();
|
|
kernel_image
|
|
.seek(SeekFrom::Start(usize::from(pe_header.relocs.0) as u64))
|
|
.unwrap();
|
|
kernel_image.write_all(&pe_header.relocs.1).unwrap();
|
|
}
|
|
}
|
|
|
|
/// To build the legacy32 bzImage setup header, the OSDK should use this target.
|
|
pub fn legacy32_rust_target_json() -> &'static str {
|
|
include_str!("x86_64-i386_pm-none.json")
|
|
}
|
|
|
|
/// We need a flat binary which satisfies PA delta == File offset delta,
|
|
/// and objcopy does not satisfy us well, so we should parse the ELF and
|
|
/// do our own objcopy job.
|
|
///
|
|
/// Interestingly, the resulting binary should be the same as the memory
|
|
/// dump of the kernel setup header when it's loaded by the bootloader.
|
|
fn to_flat_binary(elf_file: &[u8]) -> Vec<u8> {
|
|
let elf = xmas_elf::ElfFile::new(elf_file).unwrap();
|
|
let mut bin = Vec::<u8>::new();
|
|
|
|
for program in elf.program_iter() {
|
|
if program.get_type().unwrap() == xmas_elf::program::Type::Load {
|
|
let SegmentData::Undefined(header_data) = program.get_data(&elf).unwrap() else {
|
|
panic!("Unexpected segment data type");
|
|
};
|
|
let dst_file_offset = usize::from(SetupFileOffset::from(SetupVA::from(
|
|
program.virtual_addr() as usize,
|
|
)));
|
|
let dst_file_length = program.file_size() as usize;
|
|
if bin.len() < dst_file_offset + dst_file_length {
|
|
bin.resize(dst_file_offset + dst_file_length, 0);
|
|
}
|
|
let dest_slice = bin[dst_file_offset..dst_file_offset + dst_file_length].as_mut();
|
|
dest_slice.copy_from_slice(header_data);
|
|
}
|
|
}
|
|
|
|
bin
|
|
}
|
|
|
|
/// This function should be used when generating the Linux x86 Boot setup header.
|
|
/// Some fields in the Linux x86 Boot setup header should be filled after assembled.
|
|
/// And the filled fields must have the bytes with values of 0xAB. See
|
|
/// `framework/aster-frame/src/arch/x86/boot/linux_boot/setup/src/header.S` for more
|
|
/// info on this mechanism.
|
|
fn fill_header_field(header: &mut [u8], offset: usize, value: &[u8]) {
|
|
let size = value.len();
|
|
assert_eq!(
|
|
&header[offset..offset + size],
|
|
vec![0xABu8; size].as_slice(),
|
|
"The field {:#x} to be filled must be marked with 0xAB",
|
|
offset
|
|
);
|
|
header[offset..offset + size].copy_from_slice(value);
|
|
}
|
|
|
|
fn fill_legacy_header_fields(
|
|
header: &mut [u8],
|
|
kernel_len: usize,
|
|
setup_len: usize,
|
|
payload_offset: SetupVA,
|
|
) {
|
|
fill_header_field(
|
|
header,
|
|
0x248, /* payload_offset */
|
|
&(usize::from(payload_offset) as u32).to_le_bytes(),
|
|
);
|
|
|
|
fill_header_field(
|
|
header,
|
|
0x24C, /* payload_length */
|
|
&(kernel_len as u32).to_le_bytes(),
|
|
);
|
|
|
|
fill_header_field(
|
|
header,
|
|
0x260, /* init_size */
|
|
&((setup_len + kernel_len) as u32).to_le_bytes(),
|
|
);
|
|
}
|