Files
asterinas/framework/aster-frame/src/vm/frame.rs
2024-05-10 11:08:51 +08:00

761 lines
22 KiB
Rust

// SPDX-License-Identifier: MPL-2.0
use alloc::vec;
use core::{
marker::PhantomData,
ops::{BitAnd, BitOr, Not, Range},
};
use pod::Pod;
use super::{frame_allocator, HasPaddr, VmIo};
use crate::{prelude::*, vm::PAGE_SIZE, Error};
/// A collection of page frames (physical memory pages).
///
/// For the most parts, `VmFrameVec` is like `Vec<VmFrame>`. But the
/// implementation may or may not be based on `Vec`. Having a dedicated
/// type to represent a series of page frames is convenient because,
/// more often than not, one needs to operate on a batch of frames rather
/// a single frame.
#[derive(Debug, Clone)]
pub struct VmFrameVec(pub(crate) Vec<VmFrame>);
impl VmFrameVec {
pub fn get(&self, index: usize) -> Option<&VmFrame> {
self.0.get(index)
}
/// returns an empty vmframe vec
pub fn empty() -> Self {
Self(Vec::new())
}
pub fn new_with_capacity(capacity: usize) -> Self {
Self(Vec::with_capacity(capacity))
}
/// Pushs a new frame to the collection.
pub fn push(&mut self, new_frame: VmFrame) {
self.0.push(new_frame);
}
/// Pop a frame from the collection.
pub fn pop(&mut self) -> Option<VmFrame> {
self.0.pop()
}
/// Removes a frame at a position.
pub fn remove(&mut self, at: usize) -> VmFrame {
self.0.remove(at)
}
/// Append some frames.
pub fn append(&mut self, more: &mut VmFrameVec) -> Result<()> {
self.0.append(&mut more.0);
Ok(())
}
/// Truncate some frames.
///
/// If `new_len >= self.len()`, then this method has no effect.
pub fn truncate(&mut self, new_len: usize) {
if new_len >= self.0.len() {
return;
}
self.0.truncate(new_len)
}
/// Returns an iterator
pub fn iter(&self) -> core::slice::Iter<'_, VmFrame> {
self.0.iter()
}
/// Returns the number of frames.
pub fn len(&self) -> usize {
self.0.len()
}
/// Returns whether the frame collection is empty.
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Returns the number of bytes.
///
/// This method is equivalent to `self.len() * PAGE_SIZE`.
pub fn nbytes(&self) -> usize {
self.0.len() * PAGE_SIZE
}
pub fn from_one_frame(frame: VmFrame) -> Self {
Self(vec![frame])
}
}
impl IntoIterator for VmFrameVec {
type Item = VmFrame;
type IntoIter = alloc::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl VmIo for VmFrameVec {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
// Do bound check with potential integer overflow in mind
let max_offset = offset.checked_add(buf.len()).ok_or(Error::Overflow)?;
if max_offset > self.nbytes() {
return Err(Error::InvalidArgs);
}
let num_unread_pages = offset / PAGE_SIZE;
let mut start = offset % PAGE_SIZE;
let mut buf_writer: VmWriter = buf.into();
for frame in self.0.iter().skip(num_unread_pages) {
let read_len = frame.reader().skip(start).read(&mut buf_writer);
if read_len == 0 {
break;
}
start = 0;
}
Ok(())
}
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
// Do bound check with potential integer overflow in mind
let max_offset = offset.checked_add(buf.len()).ok_or(Error::Overflow)?;
if max_offset > self.nbytes() {
return Err(Error::InvalidArgs);
}
let num_unwrite_pages = offset / PAGE_SIZE;
let mut start = offset % PAGE_SIZE;
let mut buf_reader: VmReader = buf.into();
for frame in self.0.iter().skip(num_unwrite_pages) {
let write_len = frame.writer().skip(start).write(&mut buf_reader);
if write_len == 0 {
break;
}
start = 0;
}
Ok(())
}
}
/// An iterator for frames.
pub struct VmFrameVecIter<'a> {
frames: &'a VmFrameVec,
current: usize,
// more...
}
impl<'a> VmFrameVecIter<'a> {
pub fn new(frames: &'a VmFrameVec) -> Self {
Self { frames, current: 0 }
}
}
impl<'a> Iterator for VmFrameVecIter<'a> {
type Item = &'a VmFrame;
fn next(&mut self) -> Option<Self::Item> {
if self.current >= self.frames.0.len() {
return None;
}
Some(self.frames.0.get(self.current).unwrap())
}
}
bitflags::bitflags! {
pub(crate) struct VmFrameFlags : usize {
const NEED_DEALLOC = 1 << 63;
}
}
#[derive(Debug)]
/// A handle to a page frame.
///
/// An instance of `VmFrame` is a handle to a page frame (a physical memory
/// page). A cloned `VmFrame` refers to the same page frame as the original.
/// As the original and cloned instances point to the same physical address,
/// they are treated as equal to each other. Behind the scene,
/// a reference counter is maintained for each page frame so that
/// when all instances of `VmFrame` that refer to the
/// same page frame are dropped, the page frame will be freed.
/// Free page frames are allocated in bulk by `VmFrameVec::allocate`.
pub struct VmFrame {
pub(crate) frame_index: Arc<Paddr>,
}
impl Clone for VmFrame {
fn clone(&self) -> Self {
Self {
frame_index: self.frame_index.clone(),
}
}
}
impl HasPaddr for VmFrame {
fn paddr(&self) -> Paddr {
self.start_paddr()
}
}
impl VmFrame {
/// Creates a new VmFrame.
///
/// # Safety
///
/// The given physical address must be valid for use.
pub(crate) unsafe fn new(paddr: Paddr, flags: VmFrameFlags) -> Self {
assert_eq!(paddr % PAGE_SIZE, 0);
Self {
frame_index: Arc::new((paddr / PAGE_SIZE).bitor(flags.bits)),
}
}
/// Returns the physical address of the page frame.
pub fn start_paddr(&self) -> Paddr {
self.frame_index() * PAGE_SIZE
}
pub fn end_paddr(&self) -> Paddr {
(self.frame_index() + 1) * PAGE_SIZE
}
fn need_dealloc(&self) -> bool {
(*self.frame_index & VmFrameFlags::NEED_DEALLOC.bits()) != 0
}
fn frame_index(&self) -> usize {
(*self.frame_index).bitand(VmFrameFlags::all().bits().not())
}
pub fn as_ptr(&self) -> *const u8 {
super::paddr_to_vaddr(self.start_paddr()) as *const u8
}
pub fn as_mut_ptr(&self) -> *mut u8 {
super::paddr_to_vaddr(self.start_paddr()) as *mut u8
}
pub fn copy_from_frame(&self, src: &VmFrame) {
if Arc::ptr_eq(&self.frame_index, &src.frame_index) {
return;
}
// Safety: src and dst is not overlapped.
unsafe {
core::ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), PAGE_SIZE);
}
}
}
impl<'a> VmFrame {
/// Returns a reader to read data from it.
pub fn reader(&'a self) -> VmReader<'a> {
// Safety: the memory of the page is contiguous and is valid during `'a`.
unsafe { VmReader::from_raw_parts(self.as_ptr(), PAGE_SIZE) }
}
/// Returns a writer to write data into it.
pub fn writer(&'a self) -> VmWriter<'a> {
// Safety: the memory of the page is contiguous and is valid during `'a`.
unsafe { VmWriter::from_raw_parts_mut(self.as_mut_ptr(), PAGE_SIZE) }
}
}
impl VmIo for VmFrame {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
// Do bound check with potential integer overflow in mind
let max_offset = offset.checked_add(buf.len()).ok_or(Error::Overflow)?;
if max_offset > PAGE_SIZE {
return Err(Error::InvalidArgs);
}
let len = self.reader().skip(offset).read(&mut buf.into());
debug_assert!(len == buf.len());
Ok(())
}
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
// Do bound check with potential integer overflow in mind
let max_offset = offset.checked_add(buf.len()).ok_or(Error::Overflow)?;
if max_offset > PAGE_SIZE {
return Err(Error::InvalidArgs);
}
let len = self.writer().skip(offset).write(&mut buf.into());
debug_assert!(len == buf.len());
Ok(())
}
}
impl Drop for VmFrame {
fn drop(&mut self) {
if self.need_dealloc() && Arc::strong_count(&self.frame_index) == 1 {
// Safety: the frame index is valid.
unsafe {
frame_allocator::dealloc_single(self.frame_index());
}
}
}
}
/// A handle to a contiguous range of page frames (physical memory pages).
///
/// The biggest difference between `VmSegment` and `VmFrameVec` is that
/// the page frames must be contiguous for `VmSegment`.
///
/// A cloned `VmSegment` refers to the same page frames as the original.
/// As the original and cloned instances point to the same physical address,
/// they are treated as equal to each other.
///
/// #Example
///
/// ```rust
/// let vm_segment = VmAllocOptions::new(2)
/// .is_contiguous(true)
/// .alloc_contiguous()?;
/// vm_segment.write_bytes(0, buf)?;
/// ```
#[derive(Debug, Clone)]
pub struct VmSegment {
inner: VmSegmentInner,
range: Range<usize>,
}
#[derive(Debug, Clone)]
struct VmSegmentInner {
start_frame_index: Arc<Paddr>,
nframes: usize,
}
impl VmSegmentInner {
/// Creates the inner part of 'VmSegment'.
///
/// # Safety
///
/// The constructor of 'VmSegment' ensures the safety.
unsafe fn new(paddr: Paddr, nframes: usize, flags: VmFrameFlags) -> Self {
assert_eq!(paddr % PAGE_SIZE, 0);
Self {
start_frame_index: Arc::new((paddr / PAGE_SIZE).bitor(flags.bits)),
nframes,
}
}
fn start_frame_index(&self) -> usize {
(*self.start_frame_index).bitand(VmFrameFlags::all().bits().not())
}
fn start_paddr(&self) -> Paddr {
self.start_frame_index() * PAGE_SIZE
}
}
impl HasPaddr for VmSegment {
fn paddr(&self) -> Paddr {
self.start_paddr()
}
}
impl VmSegment {
/// Creates a new `VmSegment`.
///
/// # Safety
///
/// The given range of page frames must be contiguous and valid for use.
/// The given range of page frames must not have been allocated before,
/// as part of either a `VmFrame` or `VmSegment`.
pub(crate) unsafe fn new(paddr: Paddr, nframes: usize, flags: VmFrameFlags) -> Self {
Self {
inner: VmSegmentInner::new(paddr, nframes, flags),
range: 0..nframes,
}
}
/// Returns a part of the `VmSegment`.
///
/// # Panic
///
/// If `range` is not within the range of this `VmSegment`,
/// then the method panics.
pub fn range(&self, range: Range<usize>) -> Self {
let orig_range = &self.range;
let adj_range = (range.start + orig_range.start)..(range.end + orig_range.start);
assert!(!adj_range.is_empty() && adj_range.end <= orig_range.end);
Self {
inner: self.inner.clone(),
range: adj_range,
}
}
/// Returns the start physical address.
pub fn start_paddr(&self) -> Paddr {
self.start_frame_index() * PAGE_SIZE
}
/// Returns the end physical address.
pub fn end_paddr(&self) -> Paddr {
(self.start_frame_index() + self.nframes()) * PAGE_SIZE
}
/// Returns the number of page frames.
pub fn nframes(&self) -> usize {
self.range.len()
}
/// Returns the number of bytes.
pub fn nbytes(&self) -> usize {
self.nframes() * PAGE_SIZE
}
fn need_dealloc(&self) -> bool {
(*self.inner.start_frame_index & VmFrameFlags::NEED_DEALLOC.bits()) != 0
}
fn start_frame_index(&self) -> usize {
self.inner.start_frame_index() + self.range.start
}
pub fn as_ptr(&self) -> *const u8 {
super::paddr_to_vaddr(self.start_paddr()) as *const u8
}
pub fn as_mut_ptr(&self) -> *mut u8 {
super::paddr_to_vaddr(self.start_paddr()) as *mut u8
}
}
impl<'a> VmSegment {
/// Returns a reader to read data from it.
pub fn reader(&'a self) -> VmReader<'a> {
// Safety: the memory of the page frames is contiguous and is valid during `'a`.
unsafe { VmReader::from_raw_parts(self.as_ptr(), self.nbytes()) }
}
/// Returns a writer to write data into it.
pub fn writer(&'a self) -> VmWriter<'a> {
// Safety: the memory of the page frames is contiguous and is valid during `'a`.
unsafe { VmWriter::from_raw_parts_mut(self.as_mut_ptr(), self.nbytes()) }
}
}
impl VmIo for VmSegment {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
// Do bound check with potential integer overflow in mind
let max_offset = offset.checked_add(buf.len()).ok_or(Error::Overflow)?;
if max_offset > self.nbytes() {
return Err(Error::InvalidArgs);
}
let len = self.reader().skip(offset).read(&mut buf.into());
debug_assert!(len == buf.len());
Ok(())
}
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
// Do bound check with potential integer overflow in mind
let max_offset = offset.checked_add(buf.len()).ok_or(Error::Overflow)?;
if max_offset > self.nbytes() {
return Err(Error::InvalidArgs);
}
let len = self.writer().skip(offset).write(&mut buf.into());
debug_assert!(len == buf.len());
Ok(())
}
}
impl Drop for VmSegment {
fn drop(&mut self) {
if self.need_dealloc() && Arc::strong_count(&self.inner.start_frame_index) == 1 {
// Safety: the range of contiguous page frames is valid.
unsafe {
frame_allocator::dealloc_contiguous(
self.inner.start_frame_index(),
self.inner.nframes,
);
}
}
}
}
impl From<VmFrame> for VmSegment {
fn from(frame: VmFrame) -> Self {
Self {
inner: VmSegmentInner {
start_frame_index: frame.frame_index.clone(),
nframes: 1,
},
range: 0..1,
}
}
}
/// VmReader is a reader for reading data from a contiguous range of memory.
///
/// # Example
///
/// ```rust
/// impl VmIo for VmFrame {
/// fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
/// if buf.len() + offset > PAGE_SIZE {
/// return Err(Error::InvalidArgs);
/// }
/// let len = self.reader().skip(offset).read(&mut buf.into());
/// debug_assert!(len == buf.len());
/// Ok(())
/// }
/// }
/// ```
pub struct VmReader<'a> {
cursor: *const u8,
end: *const u8,
phantom: PhantomData<&'a [u8]>,
}
impl<'a> VmReader<'a> {
/// Constructs a VmReader from a pointer and a length.
///
/// # Safety
///
/// User must ensure the memory from `ptr` to `ptr.add(len)` is contiguous.
/// User must ensure the memory is valid during the entire period of `'a`.
pub const unsafe fn from_raw_parts(ptr: *const u8, len: usize) -> Self {
Self {
cursor: ptr,
end: ptr.add(len),
phantom: PhantomData,
}
}
/// Returns the number of bytes for the remaining data.
pub const fn remain(&self) -> usize {
// Safety: the end is equal to or greater than the cursor.
unsafe { self.end.sub_ptr(self.cursor) }
}
/// Returns the cursor pointer, which refers to the address of the next byte to read.
pub const fn cursor(&self) -> *const u8 {
self.cursor
}
/// Returns if it has remaining data to read.
pub const fn has_remain(&self) -> bool {
self.remain() > 0
}
/// Limits the length of remaining data.
///
/// This method ensures the postcondition of `self.remain() <= max_remain`.
pub const fn limit(mut self, max_remain: usize) -> Self {
if max_remain < self.remain() {
// Safety: the new end is less than the old end.
unsafe { self.end = self.cursor.add(max_remain) };
}
self
}
/// Skips the first `nbytes` bytes of data.
/// The length of remaining data is decreased accordingly.
///
/// # Panic
///
/// If `nbytes` is greater than `self.remain()`, then the method panics.
pub fn skip(mut self, nbytes: usize) -> Self {
assert!(nbytes <= self.remain());
// Safety: the new cursor is less than or equal to the end.
unsafe { self.cursor = self.cursor.add(nbytes) };
self
}
/// Reads all data into the writer until one of the two conditions is met:
/// 1. The reader has no remaining data.
/// 2. The writer has no available space.
///
/// Returns the number of bytes read.
///
/// It pulls the number of bytes data from the reader and
/// fills in the writer with the number of bytes.
pub fn read(&mut self, writer: &mut VmWriter<'_>) -> usize {
let copy_len = self.remain().min(writer.avail());
if copy_len == 0 {
return 0;
}
// Safety: the memory range is valid since `copy_len` is the minimum
// of the reader's remaining data and the writer's available space.
unsafe {
core::ptr::copy(self.cursor, writer.cursor, copy_len);
self.cursor = self.cursor.add(copy_len);
writer.cursor = writer.cursor.add(copy_len);
}
copy_len
}
/// Read a value of `Pod` type.
///
/// # Panic
///
/// If the length of the `Pod` type exceeds `self.remain()`, then this method will panic.
pub fn read_val<T: Pod>(&mut self) -> T {
assert!(self.remain() >= core::mem::size_of::<T>());
let mut val = T::new_uninit();
let mut writer = VmWriter::from(val.as_bytes_mut());
let read_len = self.read(&mut writer);
val
}
}
impl<'a> From<&'a [u8]> for VmReader<'a> {
fn from(slice: &'a [u8]) -> Self {
// Safety: the range of memory is contiguous and is valid during `'a`.
unsafe { Self::from_raw_parts(slice.as_ptr(), slice.len()) }
}
}
/// VmWriter is a writer for writing data to a contiguous range of memory.
///
/// # Example
///
/// ```rust
/// impl VmIo for VmFrame {
/// fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
/// if buf.len() + offset > PAGE_SIZE {
/// return Err(Error::InvalidArgs);
/// }
/// let len = self.writer().skip(offset).write(&mut buf.into());
/// debug_assert!(len == buf.len());
/// Ok(())
/// }
/// }
/// ```
pub struct VmWriter<'a> {
cursor: *mut u8,
end: *mut u8,
phantom: PhantomData<&'a mut [u8]>,
}
impl<'a> VmWriter<'a> {
/// Constructs a VmWriter from a pointer and a length.
///
/// # Safety
///
/// User must ensure the memory from `ptr` to `ptr.add(len)` is contiguous.
/// User must ensure the memory is valid during the entire period of `'a`.
pub const unsafe fn from_raw_parts_mut(ptr: *mut u8, len: usize) -> Self {
Self {
cursor: ptr,
end: ptr.add(len),
phantom: PhantomData,
}
}
/// Returns the number of bytes for the available space.
pub const fn avail(&self) -> usize {
// Safety: the end is equal to or greater than the cursor.
unsafe { self.end.sub_ptr(self.cursor) }
}
/// Returns the cursor pointer, which refers to the address of the next byte to write.
pub const fn cursor(&self) -> *mut u8 {
self.cursor
}
/// Returns if it has avaliable space to write.
pub const fn has_avail(&self) -> bool {
self.avail() > 0
}
/// Limits the length of available space.
///
/// This method ensures the postcondition of `self.avail() <= max_avail`.
pub const fn limit(mut self, max_avail: usize) -> Self {
if max_avail < self.avail() {
// Safety: the new end is less than the old end.
unsafe { self.end = self.cursor.add(max_avail) };
}
self
}
/// Skips the first `nbytes` bytes of data.
/// The length of available space is decreased accordingly.
///
/// # Panic
///
/// If `nbytes` is greater than `self.avail()`, then the method panics.
pub fn skip(mut self, nbytes: usize) -> Self {
assert!(nbytes <= self.avail());
// Safety: the new cursor is less than or equal to the end.
unsafe { self.cursor = self.cursor.add(nbytes) };
self
}
/// Writes data from the reader until one of the two conditions is met:
/// 1. The writer has no available space.
/// 2. The reader has no remaining data.
///
/// Returns the number of bytes written.
///
/// It pulls the number of bytes data from the reader and
/// fills in the writer with the number of bytes.
pub fn write(&mut self, reader: &mut VmReader<'_>) -> usize {
let copy_len = self.avail().min(reader.remain());
if copy_len == 0 {
return 0;
}
// Safety: the memory range is valid since `copy_len` is the minimum
// of the reader's remaining data and the writer's available space.
unsafe {
core::ptr::copy(reader.cursor, self.cursor, copy_len);
self.cursor = self.cursor.add(copy_len);
reader.cursor = reader.cursor.add(copy_len);
}
copy_len
}
/// Fills the available space by repeating `value`.
///
/// Returns the number of values written.
///
/// # Panic
///
/// The size of the available space must be a multiple of the size of `value`.
/// Otherwise, the method would panic.
pub fn fill<T: Pod>(&mut self, value: T) -> usize {
let avail = self.avail();
assert!((self.cursor as *mut T).is_aligned());
assert!(avail % core::mem::size_of::<T>() == 0);
let written_num = avail / core::mem::size_of::<T>();
for i in 0..written_num {
// Safety: `written_num` is calculated by the avail size and the size of the type `T`,
// hence the `add` operation and `write` operation are valid and will only manipulate
// the memory managed by this writer.
unsafe {
(self.cursor as *mut T).add(i).write(value);
}
}
// The available space has been filled so this cursor can be moved to the end.
self.cursor = self.end;
written_num
}
}
impl<'a> From<&'a mut [u8]> for VmWriter<'a> {
fn from(slice: &'a mut [u8]) -> Self {
// Safety: the range of memory is contiguous and is valid during `'a`.
unsafe { Self::from_raw_parts_mut(slice.as_mut_ptr(), slice.len()) }
}
}