Files
asterinas/osdk/deps/frame-allocator/src/chunk.rs
2025-03-30 19:24:12 +08:00

418 lines
13 KiB
Rust

// SPDX-License-Identifier: MPL-2.0
use ostd::{
impl_frame_meta_for,
mm::{frame::linked_list::Link, Paddr, UniqueFrame, PAGE_SIZE},
};
/// The order of a buddy chunk.
///
/// The size of a buddy chunk is `(1 << order) * PAGE_SIZE`.
pub(crate) type BuddyOrder = usize;
/// Returns the size of a buddy chunk of the given order.
pub(crate) const fn size_of_order(order: BuddyOrder) -> usize {
(1 << order) * PAGE_SIZE
}
/// Returns an order that covers at least the given size.
///
/// The size must be larger than 0.
pub(crate) fn greater_order_of(size: usize) -> BuddyOrder {
let size = size / PAGE_SIZE;
size.next_power_of_two().trailing_zeros() as BuddyOrder
}
/// Returns a order that covers at most the given size.
///
/// The size must be larger than 0.
pub(crate) fn lesser_order_of(size: usize) -> BuddyOrder {
let size = size / PAGE_SIZE;
(usize::BITS - size.leading_zeros() - 1) as BuddyOrder
}
/// Splits a range into chunks.
///
/// A chunk must have a `1 << order` size and alignment, so a random page-
/// aligned range might not be a chunk.
///
/// This function returns an iterator that yields the set of chunks whose union
/// is the range, and the number of the chunks is the smallest.
///
/// # Panics
///
/// It panics if the address is not page-aligned.
pub(crate) fn split_to_chunks(
addr: Paddr,
size: usize,
) -> impl Iterator<Item = (Paddr, BuddyOrder)> {
assert!(addr % PAGE_SIZE == 0);
assert!(size % PAGE_SIZE == 0);
struct SplitChunks {
addr: Paddr,
size: usize,
}
impl Iterator for SplitChunks {
type Item = (Paddr, BuddyOrder);
fn next(&mut self) -> Option<Self::Item> {
if self.size == 0 {
return None;
}
let order = max_order_from(self.addr).min(lesser_order_of(self.size));
let chunk_size = size_of_order(order);
let chunk_addr = self.addr;
self.addr += chunk_size;
self.size -= chunk_size;
Some((chunk_addr, order))
}
}
SplitChunks { addr, size }
}
/// Returns the maximum order starting from the address.
///
/// If the start address is not aligned to the order, the address/order pair
/// cannot form a buddy chunk.
///
/// # Panics
///
/// Panics if the address is not page-aligned in debug mode.
pub(crate) fn max_order_from(addr: Paddr) -> BuddyOrder {
(addr.trailing_zeros() - PAGE_SIZE.trailing_zeros()) as BuddyOrder
}
/// Splits a large buddy chunk into two smaller buddies of order `split_order`.
///
/// Returns the addresses of each buddy.
///
/// # Panics
///
/// Panics if the address is not aligned to the `order`.
pub(crate) fn split_to_order(
addr: Paddr,
order: BuddyOrder,
split_order: BuddyOrder,
) -> impl Iterator<Item = Paddr> {
assert_eq!(addr % size_of_order(order), 0);
let split_count = 1 << (order - split_order);
let split_size = size_of_order(split_order);
(0..split_count).map(move |i| addr + split_size * i)
}
/// The metadata of the head frame in a free buddy chunk.
#[derive(Debug)]
pub(crate) struct FreeHeadMeta {
/// The order of the buddy chunk.
order: BuddyOrder,
}
impl_frame_meta_for!(FreeHeadMeta);
impl FreeHeadMeta {
/// Returns the order of the buddy chunk.
pub(crate) fn order(&self) -> BuddyOrder {
self.order
}
}
/// A free buddy chunk.
#[derive(Debug)]
pub(crate) struct FreeChunk {
head: UniqueFrame<Link<FreeHeadMeta>>,
}
impl FreeChunk {
/// Gets a buddy chunk from the head frame.
///
/// The caller must ensure that the head frame should be uniquely free.
/// Otherwise it waits indefinitely.
///
/// We need a unique ownership of this chunk. Other threads may be
/// deallocating it's buddy and inspecting this chunk (see
/// [`Self::buddy`]). So we may spuriously fail to acquire it. But
/// they will soon release it so we can acquire it ultimately.
pub(crate) fn from_free_head(head: UniqueFrame<Link<FreeHeadMeta>>) -> FreeChunk {
FreeChunk { head }
}
/// Gets a buddy chunk from unused frames.
///
/// # Panics
///
/// Panics if:
/// - the range is not actually unused;
/// - the address is not aligned to the order.
pub(crate) fn from_unused(addr: Paddr, order: BuddyOrder) -> FreeChunk {
assert_eq!(addr % size_of_order(order), 0);
let head = UniqueFrame::from_unused(addr, Link::new(FreeHeadMeta { order }))
.expect("The head frame is not unused");
#[cfg(debug_assertions)]
{
use ostd::mm::{
frame::meta::{AnyFrameMeta, GetFrameError},
Frame,
};
let end = addr + size_of_order(order);
for paddr in (addr + PAGE_SIZE..end).step_by(PAGE_SIZE) {
let Err(GetFrameError::Unused) = Frame::<dyn AnyFrameMeta>::from_in_use(paddr)
else {
panic!("The range is not actually unused");
};
}
}
FreeChunk { head }
}
/// Turns the free chunk into a pointer to the head frame.
pub(crate) fn into_unique_head(self) -> UniqueFrame<Link<FreeHeadMeta>> {
self.head
}
/// Returns the order of the buddy chunk.
pub(crate) fn order(&self) -> BuddyOrder {
self.head.meta().order()
}
/// Returns the address of the buddy chunk.
pub(crate) fn addr(&self) -> Paddr {
self.head.start_paddr()
}
/// Gets the address of the buddy of this chunk.
pub(crate) fn buddy(&self) -> Paddr {
let addr = self.addr();
let order = self.order();
addr ^ size_of_order(order)
}
/// Splits the buddy chunk into two smaller buddies.
///
/// # Panics
///
/// Panics if the buddy chunk is not uniquely free.
pub(crate) fn split_free(self) -> (FreeChunk, FreeChunk) {
let order = self.order();
let addr = self.addr();
let new_order = order - 1;
let left_child_addr = addr;
let right_child_addr = addr ^ size_of_order(new_order);
let mut unique_head = self.into_unique_head();
debug_assert_eq!(unique_head.start_paddr(), left_child_addr);
unique_head.meta_mut().order = new_order;
let left_child = FreeChunk { head: unique_head };
let right_child = FreeChunk {
head: UniqueFrame::from_unused(
right_child_addr,
Link::new(FreeHeadMeta { order: new_order }),
)
.expect("Tail frames are not unused"),
};
(left_child, right_child)
}
/// Merges the buddy chunk with the sibling buddy.
///
/// # Panics
///
/// Panics if either the buddy chunks are not free or not buddies.
pub(crate) fn merge_free(mut self, mut buddy: FreeChunk) -> FreeChunk {
if self.addr() > buddy.addr() {
core::mem::swap(&mut self, &mut buddy);
}
let order = self.order();
let addr = self.addr();
let buddy_order = buddy.order();
let buddy_addr = buddy.addr();
buddy.into_unique_head().reset_as_unused(); // This will "drop" the frame without up-calling us.
assert_eq!(order, buddy_order);
assert_eq!(addr ^ size_of_order(order), buddy_addr);
let new_order = order + 1;
let mut unique_head = self.into_unique_head();
unique_head.meta_mut().order = new_order;
FreeChunk { head: unique_head }
}
}
#[cfg(ktest)]
mod test {
use super::*;
use crate::test::MockMemoryRegion;
use ostd::prelude::ktest;
#[ktest]
fn test_greater_order_of() {
#[track_caller]
fn assert_greater_order_of(nframes: usize, expected: BuddyOrder) {
assert_eq!(greater_order_of(nframes * PAGE_SIZE), expected);
}
assert_greater_order_of(1, 0);
assert_greater_order_of(2, 1);
assert_greater_order_of(3, 2);
assert_greater_order_of(4, 2);
assert_greater_order_of(5, 3);
assert_greater_order_of(6, 3);
assert_greater_order_of(7, 3);
assert_greater_order_of(8, 3);
assert_greater_order_of(9, 4);
}
#[ktest]
fn test_lesser_order_of() {
#[track_caller]
fn assert_lesser_order_of(nframes: usize, expected: BuddyOrder) {
assert_eq!(lesser_order_of(nframes * PAGE_SIZE), expected);
}
assert_lesser_order_of(1, 0);
assert_lesser_order_of(2, 1);
assert_lesser_order_of(3, 1);
assert_lesser_order_of(4, 2);
assert_lesser_order_of(5, 2);
assert_lesser_order_of(6, 2);
assert_lesser_order_of(7, 2);
assert_lesser_order_of(8, 3);
assert_lesser_order_of(9, 3);
}
#[ktest]
fn test_max_order_from() {
#[track_caller]
fn assert_max_order_from(frame_num: usize, expected: BuddyOrder) {
assert_eq!(max_order_from(frame_num * PAGE_SIZE), expected);
}
assert_max_order_from(0, (usize::BITS - PAGE_SIZE.trailing_zeros()) as BuddyOrder);
assert_max_order_from(1, 0);
assert_max_order_from(2, 1);
assert_max_order_from(3, 0);
assert_max_order_from(4, 2);
assert_max_order_from(5, 0);
assert_max_order_from(6, 1);
assert_max_order_from(7, 0);
assert_max_order_from(8, 3);
assert_max_order_from(9, 0);
assert_max_order_from(10, 1);
assert_max_order_from(11, 0);
assert_max_order_from(12, 2);
}
#[ktest]
fn test_split_to_chunks() {
use alloc::{vec, vec::Vec};
#[track_caller]
fn assert_split_to_chunk(
addr_frame_num: usize,
size_num_frames: usize,
expected: Vec<(Paddr, BuddyOrder)>,
) {
let addr = addr_frame_num * PAGE_SIZE;
let size = size_num_frames * PAGE_SIZE;
let chunks: Vec<_> = split_to_chunks(addr, size).collect();
let expected = expected
.iter()
.map(|(addr, order)| (addr * PAGE_SIZE, *order))
.collect::<Vec<_>>();
assert_eq!(chunks, expected);
}
assert_split_to_chunk(0, 0, vec![]);
assert_split_to_chunk(0, 1, vec![(0, 0)]);
assert_split_to_chunk(0, 2, vec![(0, 1)]);
assert_split_to_chunk(6, 32, vec![(6, 1), (8, 3), (16, 4), (32, 2), (36, 1)]);
assert_split_to_chunk(7, 5, vec![(7, 0), (8, 2)]);
assert_split_to_chunk(12, 16, vec![(12, 2), (16, 3), (24, 2)]);
assert_split_to_chunk(1024, 1024, vec![(1024, 10)]);
}
#[ktest]
fn test_split_to_order() {
use alloc::{vec, vec::Vec};
#[track_caller]
fn assert_split_to_order(
addr_frame_num: usize,
order: BuddyOrder,
split_order: BuddyOrder,
expected: Vec<Paddr>,
) {
let addr = addr_frame_num * PAGE_SIZE;
let chunks: Vec<_> = split_to_order(addr, order, split_order).collect();
let expected = expected
.iter()
.map(|addr| addr * PAGE_SIZE)
.collect::<Vec<_>>();
assert_eq!(chunks, expected);
}
assert_split_to_order(0, 3, 3, vec![0]);
assert_split_to_order(0, 3, 2, vec![0, 4]);
assert_split_to_order(0, 3, 1, vec![0, 2, 4, 6]);
assert_split_to_order(0, 3, 0, vec![0, 1, 2, 3, 4, 5, 6, 7]);
}
#[ktest]
fn test_free_chunk_ops() {
let order = 3;
let size = size_of_order(order);
let region = MockMemoryRegion::alloc(size);
let addr1 = region.start_paddr();
let addr2 = addr1 + size_of_order(order - 2);
let addr3 = addr1 + size_of_order(order - 2) * 2;
let chunk = FreeChunk::from_unused(addr1, order);
assert_eq!(chunk.order(), order);
assert_eq!(chunk.addr(), addr1);
assert_eq!(chunk.buddy(), addr1 ^ size);
let (left, right) = chunk.split_free();
assert_eq!(left.order(), order - 1);
assert_eq!(left.addr(), addr1);
assert_eq!(left.buddy(), addr3);
assert_eq!(right.order(), order - 1);
assert_eq!(right.addr(), addr3);
assert_eq!(right.buddy(), addr1);
let (r1, r2) = left.split_free();
assert_eq!(r1.order(), order - 2);
assert_eq!(r1.addr(), addr1);
assert_eq!(r1.buddy(), addr2);
assert_eq!(r2.order(), order - 2);
assert_eq!(r2.addr(), addr2);
assert_eq!(r2.buddy(), addr1);
let left = r1.merge_free(r2);
let chunk = left.merge_free(right);
assert_eq!(chunk.order(), order);
assert_eq!(chunk.addr(), addr1);
chunk.into_unique_head().reset_as_unused();
}
}