2024-06-07 16:59:29 +08:00

344 lines
10 KiB
Rust

// SPDX-License-Identifier: MPL-2.0
#![allow(dead_code)]
use core::cell::UnsafeCell;
use intrusive_collections::{intrusive_adapter, LinkedListAtomicLink};
use super::{
add_task,
priority::Priority,
processor::{current_task, schedule},
};
pub(crate) use crate::arch::task::{context_switch, TaskContext};
use crate::{
cpu::CpuSet,
mm::{kspace::KERNEL_PAGE_TABLE, FrameAllocOptions, PageFlags, Segment, PAGE_SIZE},
prelude::*,
sync::{SpinLock, SpinLockGuard},
user::UserSpace,
};
pub const KERNEL_STACK_SIZE: usize = PAGE_SIZE * 64;
pub trait TaskContextApi {
/// Set instruction pointer
fn set_instruction_pointer(&mut self, ip: usize);
/// Get instruction pointer
fn instruction_pointer(&self) -> usize;
/// Set stack pointer
fn set_stack_pointer(&mut self, sp: usize);
/// Get stack pointer
fn stack_pointer(&self) -> usize;
}
pub struct KernelStack {
segment: Segment,
has_guard_page: bool,
}
impl KernelStack {
pub fn new() -> Result<Self> {
Ok(Self {
segment: FrameAllocOptions::new(KERNEL_STACK_SIZE / PAGE_SIZE).alloc_contiguous()?,
has_guard_page: false,
})
}
/// Generate a kernel stack with a guard page.
/// An additional page is allocated and be regarded as a guard page, which should not be accessed.
pub fn new_with_guard_page() -> Result<Self> {
let stack_segment =
FrameAllocOptions::new(KERNEL_STACK_SIZE / PAGE_SIZE + 1).alloc_contiguous()?;
// FIXME: modifying the the linear mapping is bad.
let page_table = KERNEL_PAGE_TABLE.get().unwrap();
let guard_page_vaddr = {
let guard_page_paddr = stack_segment.start_paddr();
crate::mm::paddr_to_vaddr(guard_page_paddr)
};
// SAFETY: the segment allocated is not used by others so we can protect it.
unsafe {
page_table
.protect(&(guard_page_vaddr..guard_page_vaddr + PAGE_SIZE), |p| {
p.flags -= PageFlags::RW
})
.unwrap();
}
Ok(Self {
segment: stack_segment,
has_guard_page: true,
})
}
pub fn end_paddr(&self) -> Paddr {
self.segment.end_paddr()
}
}
impl Drop for KernelStack {
fn drop(&mut self) {
if self.has_guard_page {
// FIXME: modifying the the linear mapping is bad.
let page_table = KERNEL_PAGE_TABLE.get().unwrap();
let guard_page_vaddr = {
let guard_page_paddr = self.segment.start_paddr();
crate::mm::paddr_to_vaddr(guard_page_paddr)
};
// SAFETY: the segment allocated is not used by others so we can protect it.
unsafe {
page_table
.protect(&(guard_page_vaddr..guard_page_vaddr + PAGE_SIZE), |p| {
p.flags |= PageFlags::RW
})
.unwrap();
}
}
}
}
/// A task that executes a function to the end.
///
/// Each task is associated with per-task data and an optional user space.
/// If having a user space, the task can switch to the user space to
/// execute user code. Multiple tasks can share a single user space.
pub struct Task {
func: Box<dyn Fn() + Send + Sync>,
data: Box<dyn Any + Send + Sync>,
user_space: Option<Arc<UserSpace>>,
task_inner: SpinLock<TaskInner>,
ctx: UnsafeCell<TaskContext>,
/// kernel stack, note that the top is SyscallFrame/TrapFrame
kstack: KernelStack,
link: LinkedListAtomicLink,
priority: Priority,
// TODO: add multiprocessor support
cpu_affinity: CpuSet,
}
// TaskAdapter struct is implemented for building relationships between doubly linked list and Task struct
intrusive_adapter!(pub TaskAdapter = Arc<Task>: Task { link: LinkedListAtomicLink });
// SAFETY: `UnsafeCell<TaskContext>` is not `Sync`. However, we only use it in `schedule()` where
// we have exclusive access to the field.
unsafe impl Sync for Task {}
pub(crate) struct TaskInner {
pub task_status: TaskStatus,
}
impl Task {
/// Gets the current task.
pub fn current() -> Arc<Task> {
current_task().unwrap()
}
/// get inner
pub(crate) fn inner_exclusive_access(&self) -> SpinLockGuard<TaskInner> {
self.task_inner.lock_irq_disabled()
}
pub(super) fn ctx(&self) -> &UnsafeCell<TaskContext> {
&self.ctx
}
/// Yields execution so that another task may be scheduled.
///
/// Note that this method cannot be simply named "yield" as the name is
/// a Rust keyword.
pub fn yield_now() {
schedule();
}
/// Runs the task.
pub fn run(self: &Arc<Self>) {
add_task(self.clone());
schedule();
}
/// Returns the task status.
pub fn status(&self) -> TaskStatus {
self.task_inner.lock_irq_disabled().task_status
}
/// Returns the task data.
pub fn data(&self) -> &Box<dyn Any + Send + Sync> {
&self.data
}
/// Returns the user space of this task, if it has.
pub fn user_space(&self) -> Option<&Arc<UserSpace>> {
if self.user_space.is_some() {
Some(self.user_space.as_ref().unwrap())
} else {
None
}
}
/// Exits the current task.
///
/// The task `self` must be the task that is currently running.
///
/// **NOTE:** If there is anything left on the stack, it will be forgotten. This behavior may
/// lead to resource leakage.
fn exit(self: Arc<Self>) -> ! {
self.inner_exclusive_access().task_status = TaskStatus::Exited;
// `current_task()` still holds a strong reference, so nothing is destroyed at this point,
// neither is the kernel stack.
drop(self);
schedule();
unreachable!()
}
pub fn is_real_time(&self) -> bool {
self.priority.is_real_time()
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
/// The status of a task.
pub enum TaskStatus {
/// The task is runnable.
Runnable,
/// The task is running in the foreground but will sleep when it goes to the background.
Sleepy,
/// The task is sleeping in the background.
Sleeping,
/// The task has exited.
Exited,
}
/// Options to create or spawn a new task.
pub struct TaskOptions {
func: Option<Box<dyn Fn() + Send + Sync>>,
data: Option<Box<dyn Any + Send + Sync>>,
user_space: Option<Arc<UserSpace>>,
priority: Priority,
cpu_affinity: CpuSet,
}
impl TaskOptions {
/// Creates a set of options for a task.
pub fn new<F>(func: F) -> Self
where
F: Fn() + Send + Sync + 'static,
{
let cpu_affinity = CpuSet::new_full();
Self {
func: Some(Box::new(func)),
data: None,
user_space: None,
priority: Priority::normal(),
cpu_affinity,
}
}
pub fn func<F>(mut self, func: F) -> Self
where
F: Fn() + Send + Sync + 'static,
{
self.func = Some(Box::new(func));
self
}
pub fn data<T>(mut self, data: T) -> Self
where
T: Any + Send + Sync,
{
self.data = Some(Box::new(data));
self
}
/// Sets the user space associated with the task.
pub fn user_space(mut self, user_space: Option<Arc<UserSpace>>) -> Self {
self.user_space = user_space;
self
}
/// Sets the priority of the task.
pub fn priority(mut self, priority: Priority) -> Self {
self.priority = priority;
self
}
pub fn cpu_affinity(mut self, cpu_affinity: CpuSet) -> Self {
self.cpu_affinity = cpu_affinity;
self
}
/// Build a new task without running it immediately.
pub fn build(self) -> Result<Arc<Task>> {
/// all task will entering this function
/// this function is mean to executing the task_fn in Task
extern "C" fn kernel_task_entry() {
let current_task = current_task()
.expect("no current task, it should have current task in kernel task entry");
current_task.func.call(());
current_task.exit();
}
let mut new_task = Task {
func: self.func.unwrap(),
data: self.data.unwrap(),
user_space: self.user_space,
task_inner: SpinLock::new(TaskInner {
task_status: TaskStatus::Runnable,
}),
ctx: UnsafeCell::new(TaskContext::default()),
kstack: KernelStack::new_with_guard_page()?,
link: LinkedListAtomicLink::new(),
priority: self.priority,
cpu_affinity: self.cpu_affinity,
};
let ctx = new_task.ctx.get_mut();
ctx.set_instruction_pointer(kernel_task_entry as usize);
// We should reserve space for the return address in the stack, otherwise
// we will write across the page boundary due to the implementation of
// the context switch.
//
// According to the System V AMD64 ABI, the stack pointer should be aligned
// to at least 16 bytes. And a larger alignment is needed if larger arguments
// are passed to the function. The `kernel_task_entry` function does not
// have any arguments, so we only need to align the stack pointer to 16 bytes.
ctx.set_stack_pointer(crate::mm::paddr_to_vaddr(new_task.kstack.end_paddr() - 16));
Ok(Arc::new(new_task))
}
/// Build a new task and run it immediately.
pub fn spawn(self) -> Result<Arc<Task>> {
let task = self.build()?;
task.run();
Ok(task)
}
}
#[cfg(ktest)]
mod test {
#[ktest]
fn create_task() {
let task = || {
assert_eq!(1, 1);
};
let task_option = crate::task::TaskOptions::new(task)
.data(())
.build()
.unwrap();
task_option.run();
}
#[ktest]
fn spawn_task() {
let task = || {
assert_eq!(1, 1);
};
let _ = crate::task::TaskOptions::new(task).data(()).spawn();
}
}