mirror of
https://github.com/openfaas/faas.git
synced 2025-06-27 01:03:26 +00:00
Vendoring with Glide and delete function handler
This commit is contained in:
606
gateway/vendor/github.com/Microsoft/go-winio/wim/lzx/lzx.go
generated
vendored
Normal file
606
gateway/vendor/github.com/Microsoft/go-winio/wim/lzx/lzx.go
generated
vendored
Normal file
@ -0,0 +1,606 @@
|
||||
// Package lzx implements a decompressor for the the WIM variant of the
|
||||
// LZX compression algorithm.
|
||||
//
|
||||
// The LZX algorithm is an earlier variant of LZX DELTA, which is documented
|
||||
// at https://msdn.microsoft.com/en-us/library/cc483133(v=exchg.80).aspx.
|
||||
package lzx
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"io"
|
||||
)
|
||||
|
||||
const (
|
||||
maincodecount = 496
|
||||
maincodesplit = 256
|
||||
lencodecount = 249
|
||||
lenshift = 9
|
||||
codemask = 0x1ff
|
||||
tablebits = 9
|
||||
tablesize = 1 << tablebits
|
||||
|
||||
maxBlockSize = 32768
|
||||
windowSize = 32768
|
||||
|
||||
maxTreePathLen = 16
|
||||
|
||||
e8filesize = 12000000
|
||||
maxe8offset = 0x3fffffff
|
||||
|
||||
verbatimBlock = 1
|
||||
alignedOffsetBlock = 2
|
||||
uncompressedBlock = 3
|
||||
)
|
||||
|
||||
var footerBits = [...]byte{
|
||||
0, 0, 0, 0, 1, 1, 2, 2,
|
||||
3, 3, 4, 4, 5, 5, 6, 6,
|
||||
7, 7, 8, 8, 9, 9, 10, 10,
|
||||
11, 11, 12, 12, 13, 13, 14,
|
||||
}
|
||||
|
||||
var basePosition = [...]uint16{
|
||||
0, 1, 2, 3, 4, 6, 8, 12,
|
||||
16, 24, 32, 48, 64, 96, 128, 192,
|
||||
256, 384, 512, 768, 1024, 1536, 2048, 3072,
|
||||
4096, 6144, 8192, 12288, 16384, 24576, 32768,
|
||||
}
|
||||
|
||||
var (
|
||||
errCorrupt = errors.New("LZX data corrupt")
|
||||
)
|
||||
|
||||
// Reader is an interface used by the decompressor to access
|
||||
// the input stream. If the provided io.Reader does not implement
|
||||
// Reader, then a bufio.Reader is used.
|
||||
type Reader interface {
|
||||
io.Reader
|
||||
io.ByteReader
|
||||
}
|
||||
|
||||
type decompressor struct {
|
||||
r io.Reader
|
||||
err error
|
||||
unaligned bool
|
||||
nbits byte
|
||||
c uint32
|
||||
lru [3]uint16
|
||||
uncompressed int
|
||||
windowReader *bytes.Reader
|
||||
mainlens [maincodecount]byte
|
||||
lenlens [lencodecount]byte
|
||||
window [windowSize]byte
|
||||
b []byte
|
||||
bv int
|
||||
bo int
|
||||
}
|
||||
|
||||
//go:noinline
|
||||
func (f *decompressor) fail(err error) {
|
||||
if f.err == nil {
|
||||
f.err = err
|
||||
}
|
||||
f.bo = 0
|
||||
f.bv = 0
|
||||
}
|
||||
|
||||
func (f *decompressor) ensureAtLeast(n int) error {
|
||||
if f.bv-f.bo >= n {
|
||||
return nil
|
||||
}
|
||||
|
||||
if f.err != nil {
|
||||
return f.err
|
||||
}
|
||||
|
||||
if f.bv != f.bo {
|
||||
copy(f.b[:f.bv-f.bo], f.b[f.bo:f.bv])
|
||||
}
|
||||
n, err := io.ReadAtLeast(f.r, f.b[f.bv-f.bo:], n)
|
||||
if err != nil {
|
||||
if err == io.EOF {
|
||||
err = io.ErrUnexpectedEOF
|
||||
} else {
|
||||
f.fail(err)
|
||||
}
|
||||
return err
|
||||
}
|
||||
f.bv = f.bv - f.bo + n
|
||||
f.bo = 0
|
||||
return nil
|
||||
}
|
||||
|
||||
// feed retrieves another 16-bit word from the stream and consumes
|
||||
// it into f.c. It returns false if there are no more bytes available.
|
||||
// Otherwise, on error, it sets f.err.
|
||||
func (f *decompressor) feed() bool {
|
||||
err := f.ensureAtLeast(2)
|
||||
if err != nil {
|
||||
if err == io.ErrUnexpectedEOF {
|
||||
return false
|
||||
}
|
||||
}
|
||||
f.c |= (uint32(f.b[f.bo+1])<<8 | uint32(f.b[f.bo])) << (16 - f.nbits)
|
||||
f.nbits += 16
|
||||
f.bo += 2
|
||||
return true
|
||||
}
|
||||
|
||||
// getBits retrieves the next n bits from the byte stream. n
|
||||
// must be <= 16. It sets f.err on error.
|
||||
func (f *decompressor) getBits(n byte) uint16 {
|
||||
if f.nbits < n {
|
||||
if !f.feed() {
|
||||
f.fail(io.ErrUnexpectedEOF)
|
||||
}
|
||||
}
|
||||
c := uint16(f.c >> (32 - n))
|
||||
f.c <<= n
|
||||
f.nbits -= n
|
||||
return c
|
||||
}
|
||||
|
||||
type huffman struct {
|
||||
extra [][]uint16
|
||||
maxbits byte
|
||||
table [tablesize]uint16
|
||||
}
|
||||
|
||||
// buildTable builds a huffman decoding table from a slice of code lengths,
|
||||
// one per code, in order. Each code length must be <= maxTreePathLen.
|
||||
// See https://en.wikipedia.org/wiki/Canonical_Huffman_code.
|
||||
func buildTable(codelens []byte) *huffman {
|
||||
// Determine the number of codes of each length, and the
|
||||
// maximum length.
|
||||
var count [maxTreePathLen + 1]uint
|
||||
var max byte
|
||||
for _, cl := range codelens {
|
||||
count[cl]++
|
||||
if max < cl {
|
||||
max = cl
|
||||
}
|
||||
}
|
||||
|
||||
if max == 0 {
|
||||
return &huffman{}
|
||||
}
|
||||
|
||||
// Determine the first code of each length.
|
||||
var first [maxTreePathLen + 1]uint
|
||||
code := uint(0)
|
||||
for i := byte(1); i <= max; i++ {
|
||||
code <<= 1
|
||||
first[i] = code
|
||||
code += count[i]
|
||||
}
|
||||
|
||||
if code != 1<<max {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Build a table for code lookup. For code sizes < max,
|
||||
// put all possible suffixes for the code into the table, too.
|
||||
// For max > tablebits, split long codes into additional tables
|
||||
// of suffixes of max-tablebits length.
|
||||
h := &huffman{maxbits: max}
|
||||
if max > tablebits {
|
||||
core := first[tablebits+1] / 2 // Number of codes that fit without extra tables
|
||||
nextra := 1<<tablebits - core // Number of extra entries
|
||||
h.extra = make([][]uint16, nextra)
|
||||
for code := core; code < 1<<tablebits; code++ {
|
||||
h.table[code] = uint16(code - core)
|
||||
h.extra[code-core] = make([]uint16, 1<<(max-tablebits))
|
||||
}
|
||||
}
|
||||
|
||||
for i, cl := range codelens {
|
||||
if cl != 0 {
|
||||
code := first[cl]
|
||||
first[cl]++
|
||||
v := uint16(cl)<<lenshift | uint16(i)
|
||||
if cl <= tablebits {
|
||||
extendedCode := code << (tablebits - cl)
|
||||
for j := uint(0); j < 1<<(tablebits-cl); j++ {
|
||||
h.table[extendedCode+j] = v
|
||||
}
|
||||
} else {
|
||||
prefix := code >> (cl - tablebits)
|
||||
suffix := code & (1<<(cl-tablebits) - 1)
|
||||
extendedCode := suffix << (max - cl)
|
||||
for j := uint(0); j < 1<<(max-cl); j++ {
|
||||
h.extra[h.table[prefix]][extendedCode+j] = v
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return h
|
||||
}
|
||||
|
||||
// getCode retrieves the next code using the provided
|
||||
// huffman tree. It sets f.err on error.
|
||||
func (f *decompressor) getCode(h *huffman) uint16 {
|
||||
if h.maxbits > 0 {
|
||||
if f.nbits < maxTreePathLen {
|
||||
f.feed()
|
||||
}
|
||||
|
||||
// For codes with length < tablebits, it doesn't matter
|
||||
// what the remainder of the bits used for table lookup
|
||||
// are, since entries with all possible suffixes were
|
||||
// added to the table.
|
||||
c := h.table[f.c>>(32-tablebits)]
|
||||
if c >= 1<<lenshift {
|
||||
// The code is already in c.
|
||||
} else {
|
||||
c = h.extra[c][f.c<<tablebits>>(32-(h.maxbits-tablebits))]
|
||||
}
|
||||
|
||||
n := byte(c >> lenshift)
|
||||
if f.nbits >= n {
|
||||
// Only consume the length of the code, not the maximum
|
||||
// code length.
|
||||
f.c <<= n
|
||||
f.nbits -= n
|
||||
return c & codemask
|
||||
}
|
||||
|
||||
f.fail(io.ErrUnexpectedEOF)
|
||||
return 0
|
||||
}
|
||||
|
||||
// This is an empty tree. It should not be used.
|
||||
f.fail(errCorrupt)
|
||||
return 0
|
||||
}
|
||||
|
||||
// readTree updates the huffman tree path lengths in lens by
|
||||
// reading and decoding lengths from the byte stream. lens
|
||||
// should be prepopulated with the previous block's tree's path
|
||||
// lengths. For the first block, lens should be zero.
|
||||
func (f *decompressor) readTree(lens []byte) error {
|
||||
// Get the pre-tree for the main tree.
|
||||
var pretreeLen [20]byte
|
||||
for i := range pretreeLen {
|
||||
pretreeLen[i] = byte(f.getBits(4))
|
||||
}
|
||||
if f.err != nil {
|
||||
return f.err
|
||||
}
|
||||
h := buildTable(pretreeLen[:])
|
||||
|
||||
// The lengths are encoded as a series of huffman codes
|
||||
// encoded by the pre-tree.
|
||||
for i := 0; i < len(lens); {
|
||||
c := byte(f.getCode(h))
|
||||
if f.err != nil {
|
||||
return f.err
|
||||
}
|
||||
switch {
|
||||
case c <= 16: // length is delta from previous length
|
||||
lens[i] = (lens[i] + 17 - c) % 17
|
||||
i++
|
||||
case c == 17: // next n + 4 lengths are zero
|
||||
zeroes := int(f.getBits(4)) + 4
|
||||
if i+zeroes > len(lens) {
|
||||
return errCorrupt
|
||||
}
|
||||
for j := 0; j < zeroes; j++ {
|
||||
lens[i+j] = 0
|
||||
}
|
||||
i += zeroes
|
||||
case c == 18: // next n + 20 lengths are zero
|
||||
zeroes := int(f.getBits(5)) + 20
|
||||
if i+zeroes > len(lens) {
|
||||
return errCorrupt
|
||||
}
|
||||
for j := 0; j < zeroes; j++ {
|
||||
lens[i+j] = 0
|
||||
}
|
||||
i += zeroes
|
||||
case c == 19: // next n + 4 lengths all have the same value
|
||||
same := int(f.getBits(1)) + 4
|
||||
if i+same > len(lens) {
|
||||
return errCorrupt
|
||||
}
|
||||
c = byte(f.getCode(h))
|
||||
if c > 16 {
|
||||
return errCorrupt
|
||||
}
|
||||
l := (lens[i] + 17 - c) % 17
|
||||
for j := 0; j < same; j++ {
|
||||
lens[i+j] = l
|
||||
}
|
||||
i += same
|
||||
default:
|
||||
return errCorrupt
|
||||
}
|
||||
}
|
||||
|
||||
if f.err != nil {
|
||||
return f.err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (f *decompressor) readBlockHeader() (byte, uint16, error) {
|
||||
// If the previous block was an unaligned uncompressed block, restore
|
||||
// 2-byte alignment.
|
||||
if f.unaligned {
|
||||
err := f.ensureAtLeast(1)
|
||||
if err != nil {
|
||||
return 0, 0, err
|
||||
}
|
||||
f.bo++
|
||||
f.unaligned = false
|
||||
}
|
||||
|
||||
blockType := f.getBits(3)
|
||||
full := f.getBits(1)
|
||||
var blockSize uint16
|
||||
if full != 0 {
|
||||
blockSize = maxBlockSize
|
||||
} else {
|
||||
blockSize = f.getBits(16)
|
||||
if blockSize > maxBlockSize {
|
||||
return 0, 0, errCorrupt
|
||||
}
|
||||
}
|
||||
|
||||
if f.err != nil {
|
||||
return 0, 0, f.err
|
||||
}
|
||||
|
||||
switch blockType {
|
||||
case verbatimBlock, alignedOffsetBlock:
|
||||
// The caller will read the huffman trees.
|
||||
case uncompressedBlock:
|
||||
if f.nbits > 16 {
|
||||
panic("impossible: more than one 16-bit word remains")
|
||||
}
|
||||
|
||||
// Drop the remaining bits in the current 16-bit word
|
||||
// If there are no bits left, discard a full 16-bit word.
|
||||
n := f.nbits
|
||||
if n == 0 {
|
||||
n = 16
|
||||
}
|
||||
|
||||
f.getBits(n)
|
||||
|
||||
// Read the LRU values for the next block.
|
||||
err := f.ensureAtLeast(12)
|
||||
if err != nil {
|
||||
return 0, 0, err
|
||||
}
|
||||
|
||||
f.lru[0] = uint16(binary.LittleEndian.Uint32(f.b[f.bo : f.bo+4]))
|
||||
f.lru[1] = uint16(binary.LittleEndian.Uint32(f.b[f.bo+4 : f.bo+8]))
|
||||
f.lru[2] = uint16(binary.LittleEndian.Uint32(f.b[f.bo+8 : f.bo+12]))
|
||||
f.bo += 12
|
||||
|
||||
default:
|
||||
return 0, 0, errCorrupt
|
||||
}
|
||||
|
||||
return byte(blockType), blockSize, nil
|
||||
}
|
||||
|
||||
// readTrees reads the two or three huffman trees for the current block.
|
||||
// readAligned specifies whether to read the aligned offset tree.
|
||||
func (f *decompressor) readTrees(readAligned bool) (main *huffman, length *huffman, aligned *huffman, err error) {
|
||||
// Aligned offset blocks start with a small aligned offset tree.
|
||||
if readAligned {
|
||||
var alignedLen [8]byte
|
||||
for i := range alignedLen {
|
||||
alignedLen[i] = byte(f.getBits(3))
|
||||
}
|
||||
aligned = buildTable(alignedLen[:])
|
||||
if aligned == nil {
|
||||
err = errors.New("corrupt")
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// The main tree is encoded in two parts.
|
||||
err = f.readTree(f.mainlens[:maincodesplit])
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
err = f.readTree(f.mainlens[maincodesplit:])
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
main = buildTable(f.mainlens[:])
|
||||
if main == nil {
|
||||
err = errors.New("corrupt")
|
||||
return
|
||||
}
|
||||
|
||||
// The length tree is encoding in a single part.
|
||||
err = f.readTree(f.lenlens[:])
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
|
||||
length = buildTable(f.lenlens[:])
|
||||
if length == nil {
|
||||
err = errors.New("corrupt")
|
||||
return
|
||||
}
|
||||
|
||||
err = f.err
|
||||
return
|
||||
}
|
||||
|
||||
// readCompressedBlock decodes a compressed block, writing into the window
|
||||
// starting at start and ending at end, and using the provided huffman trees.
|
||||
func (f *decompressor) readCompressedBlock(start, end uint16, hmain, hlength, haligned *huffman) (int, error) {
|
||||
i := start
|
||||
for i < end {
|
||||
main := f.getCode(hmain)
|
||||
if f.err != nil {
|
||||
break
|
||||
}
|
||||
if main < 256 {
|
||||
// Literal byte.
|
||||
f.window[i] = byte(main)
|
||||
i++
|
||||
continue
|
||||
}
|
||||
|
||||
// This is a match backward in the window. Determine
|
||||
// the offset and dlength.
|
||||
matchlen := (main - 256) % 8
|
||||
slot := (main - 256) / 8
|
||||
|
||||
// The length is either the low bits of the code,
|
||||
// or if this is 7, is encoded with the length tree.
|
||||
if matchlen == 7 {
|
||||
matchlen += f.getCode(hlength)
|
||||
}
|
||||
matchlen += 2
|
||||
|
||||
var matchoffset uint16
|
||||
if slot < 3 {
|
||||
// The offset is one of the LRU values.
|
||||
matchoffset = f.lru[slot]
|
||||
f.lru[slot] = f.lru[0]
|
||||
f.lru[0] = matchoffset
|
||||
} else {
|
||||
// The offset is encoded as a combination of the
|
||||
// slot and more bits from the bit stream.
|
||||
offsetbits := footerBits[slot]
|
||||
var verbatimbits, alignedbits uint16
|
||||
if offsetbits > 0 {
|
||||
if haligned != nil && offsetbits >= 3 {
|
||||
// This is an aligned offset block. Combine
|
||||
// the bits written verbatim with the aligned
|
||||
// offset tree code.
|
||||
verbatimbits = f.getBits(offsetbits-3) * 8
|
||||
alignedbits = f.getCode(haligned)
|
||||
} else {
|
||||
// There are no aligned offset bits to read,
|
||||
// only verbatim bits.
|
||||
verbatimbits = f.getBits(offsetbits)
|
||||
alignedbits = 0
|
||||
}
|
||||
}
|
||||
matchoffset = basePosition[slot] + verbatimbits + alignedbits - 2
|
||||
// Update the LRU cache.
|
||||
f.lru[2] = f.lru[1]
|
||||
f.lru[1] = f.lru[0]
|
||||
f.lru[0] = matchoffset
|
||||
}
|
||||
|
||||
if matchoffset <= i && matchlen <= end-i {
|
||||
copyend := i + matchlen
|
||||
for ; i < copyend; i++ {
|
||||
f.window[i] = f.window[i-matchoffset]
|
||||
}
|
||||
} else {
|
||||
f.fail(errCorrupt)
|
||||
break
|
||||
}
|
||||
}
|
||||
return int(i - start), f.err
|
||||
}
|
||||
|
||||
// readBlock decodes the current block and returns the number of uncompressed bytes.
|
||||
func (f *decompressor) readBlock(start uint16) (int, error) {
|
||||
blockType, size, err := f.readBlockHeader()
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
if blockType == uncompressedBlock {
|
||||
if size%2 == 1 {
|
||||
// Remember to realign the byte stream at the next block.
|
||||
f.unaligned = true
|
||||
}
|
||||
copied := 0
|
||||
if f.bo < f.bv {
|
||||
copied = int(size)
|
||||
s := int(start)
|
||||
if copied > f.bv-f.bo {
|
||||
copied = f.bv - f.bo
|
||||
}
|
||||
copy(f.window[s:s+copied], f.b[f.bo:f.bo+copied])
|
||||
f.bo += copied
|
||||
}
|
||||
n, err := io.ReadFull(f.r, f.window[start+uint16(copied):start+size])
|
||||
return copied + n, err
|
||||
}
|
||||
|
||||
hmain, hlength, haligned, err := f.readTrees(blockType == alignedOffsetBlock)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return f.readCompressedBlock(start, start+size, hmain, hlength, haligned)
|
||||
}
|
||||
|
||||
// decodeE8 reverses the 0xe8 x86 instruction encoding that was performed
|
||||
// to the uncompressed data before it was compressed.
|
||||
func decodeE8(b []byte, off int64) {
|
||||
if off > maxe8offset || len(b) < 10 {
|
||||
return
|
||||
}
|
||||
for i := 0; i < len(b)-10; i++ {
|
||||
if b[i] == 0xe8 {
|
||||
currentPtr := int32(off) + int32(i)
|
||||
abs := int32(binary.LittleEndian.Uint32(b[i+1 : i+5]))
|
||||
if abs >= -currentPtr && abs < e8filesize {
|
||||
var rel int32
|
||||
if abs >= 0 {
|
||||
rel = abs - currentPtr
|
||||
} else {
|
||||
rel = abs + e8filesize
|
||||
}
|
||||
binary.LittleEndian.PutUint32(b[i+1:i+5], uint32(rel))
|
||||
}
|
||||
i += 4
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (f *decompressor) Read(b []byte) (int, error) {
|
||||
// Read and uncompress everything.
|
||||
if f.windowReader == nil {
|
||||
n := 0
|
||||
for n < f.uncompressed {
|
||||
k, err := f.readBlock(uint16(n))
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
n += k
|
||||
}
|
||||
decodeE8(f.window[:f.uncompressed], 0)
|
||||
f.windowReader = bytes.NewReader(f.window[:f.uncompressed])
|
||||
}
|
||||
|
||||
// Just read directly from the window.
|
||||
return f.windowReader.Read(b)
|
||||
}
|
||||
|
||||
func (f *decompressor) Close() error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// NewReader returns a new io.ReadCloser that decompresses a
|
||||
// WIM LZX stream until uncompressedSize bytes have been returned.
|
||||
func NewReader(r io.Reader, uncompressedSize int) (io.ReadCloser, error) {
|
||||
if uncompressedSize > windowSize {
|
||||
return nil, errors.New("uncompressed size is limited to 32KB")
|
||||
}
|
||||
f := &decompressor{
|
||||
lru: [3]uint16{1, 1, 1},
|
||||
uncompressed: uncompressedSize,
|
||||
b: make([]byte, 4096),
|
||||
r: r,
|
||||
}
|
||||
return f, nil
|
||||
}
|
Reference in New Issue
Block a user