Rename Makefile targets

Signed-off-by: Alex Ellis (OpenFaaS Ltd) <alex@openfaas.com>
This commit is contained in:
Alex Ellis (OpenFaaS Ltd)
2023-10-23 11:29:19 +01:00
parent 479285caf6
commit 9ba4a73d5d
350 changed files with 22981 additions and 3972 deletions

304
gateway/vendor/github.com/klauspost/compress/LICENSE generated vendored Normal file
View File

@ -0,0 +1,304 @@
Copyright (c) 2012 The Go Authors. All rights reserved.
Copyright (c) 2019 Klaus Post. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
------------------
Files: gzhttp/*
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2016-2017 The New York Times Company
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------
Files: s2/cmd/internal/readahead/*
The MIT License (MIT)
Copyright (c) 2015 Klaus Post
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
---------------------
Files: snappy/*
Files: internal/snapref/*
Copyright (c) 2011 The Snappy-Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-----------------
Files: s2/cmd/internal/filepathx/*
Copyright 2016 The filepathx Authors
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,184 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
// dictDecoder implements the LZ77 sliding dictionary as used in decompression.
// LZ77 decompresses data through sequences of two forms of commands:
//
// - Literal insertions: Runs of one or more symbols are inserted into the data
// stream as is. This is accomplished through the writeByte method for a
// single symbol, or combinations of writeSlice/writeMark for multiple symbols.
// Any valid stream must start with a literal insertion if no preset dictionary
// is used.
//
// - Backward copies: Runs of one or more symbols are copied from previously
// emitted data. Backward copies come as the tuple (dist, length) where dist
// determines how far back in the stream to copy from and length determines how
// many bytes to copy. Note that it is valid for the length to be greater than
// the distance. Since LZ77 uses forward copies, that situation is used to
// perform a form of run-length encoding on repeated runs of symbols.
// The writeCopy and tryWriteCopy are used to implement this command.
//
// For performance reasons, this implementation performs little to no sanity
// checks about the arguments. As such, the invariants documented for each
// method call must be respected.
type dictDecoder struct {
hist []byte // Sliding window history
// Invariant: 0 <= rdPos <= wrPos <= len(hist)
wrPos int // Current output position in buffer
rdPos int // Have emitted hist[:rdPos] already
full bool // Has a full window length been written yet?
}
// init initializes dictDecoder to have a sliding window dictionary of the given
// size. If a preset dict is provided, it will initialize the dictionary with
// the contents of dict.
func (dd *dictDecoder) init(size int, dict []byte) {
*dd = dictDecoder{hist: dd.hist}
if cap(dd.hist) < size {
dd.hist = make([]byte, size)
}
dd.hist = dd.hist[:size]
if len(dict) > len(dd.hist) {
dict = dict[len(dict)-len(dd.hist):]
}
dd.wrPos = copy(dd.hist, dict)
if dd.wrPos == len(dd.hist) {
dd.wrPos = 0
dd.full = true
}
dd.rdPos = dd.wrPos
}
// histSize reports the total amount of historical data in the dictionary.
func (dd *dictDecoder) histSize() int {
if dd.full {
return len(dd.hist)
}
return dd.wrPos
}
// availRead reports the number of bytes that can be flushed by readFlush.
func (dd *dictDecoder) availRead() int {
return dd.wrPos - dd.rdPos
}
// availWrite reports the available amount of output buffer space.
func (dd *dictDecoder) availWrite() int {
return len(dd.hist) - dd.wrPos
}
// writeSlice returns a slice of the available buffer to write data to.
//
// This invariant will be kept: len(s) <= availWrite()
func (dd *dictDecoder) writeSlice() []byte {
return dd.hist[dd.wrPos:]
}
// writeMark advances the writer pointer by cnt.
//
// This invariant must be kept: 0 <= cnt <= availWrite()
func (dd *dictDecoder) writeMark(cnt int) {
dd.wrPos += cnt
}
// writeByte writes a single byte to the dictionary.
//
// This invariant must be kept: 0 < availWrite()
func (dd *dictDecoder) writeByte(c byte) {
dd.hist[dd.wrPos] = c
dd.wrPos++
}
// writeCopy copies a string at a given (dist, length) to the output.
// This returns the number of bytes copied and may be less than the requested
// length if the available space in the output buffer is too small.
//
// This invariant must be kept: 0 < dist <= histSize()
func (dd *dictDecoder) writeCopy(dist, length int) int {
dstBase := dd.wrPos
dstPos := dstBase
srcPos := dstPos - dist
endPos := dstPos + length
if endPos > len(dd.hist) {
endPos = len(dd.hist)
}
// Copy non-overlapping section after destination position.
//
// This section is non-overlapping in that the copy length for this section
// is always less than or equal to the backwards distance. This can occur
// if a distance refers to data that wraps-around in the buffer.
// Thus, a backwards copy is performed here; that is, the exact bytes in
// the source prior to the copy is placed in the destination.
if srcPos < 0 {
srcPos += len(dd.hist)
dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:])
srcPos = 0
}
// Copy possibly overlapping section before destination position.
//
// This section can overlap if the copy length for this section is larger
// than the backwards distance. This is allowed by LZ77 so that repeated
// strings can be succinctly represented using (dist, length) pairs.
// Thus, a forwards copy is performed here; that is, the bytes copied is
// possibly dependent on the resulting bytes in the destination as the copy
// progresses along. This is functionally equivalent to the following:
//
// for i := 0; i < endPos-dstPos; i++ {
// dd.hist[dstPos+i] = dd.hist[srcPos+i]
// }
// dstPos = endPos
//
for dstPos < endPos {
dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:dstPos])
}
dd.wrPos = dstPos
return dstPos - dstBase
}
// tryWriteCopy tries to copy a string at a given (distance, length) to the
// output. This specialized version is optimized for short distances.
//
// This method is designed to be inlined for performance reasons.
//
// This invariant must be kept: 0 < dist <= histSize()
func (dd *dictDecoder) tryWriteCopy(dist, length int) int {
dstPos := dd.wrPos
endPos := dstPos + length
if dstPos < dist || endPos > len(dd.hist) {
return 0
}
dstBase := dstPos
srcPos := dstPos - dist
// Copy possibly overlapping section before destination position.
loop:
dstPos += copy(dd.hist[dstPos:endPos], dd.hist[srcPos:dstPos])
if dstPos < endPos {
goto loop // Avoid for-loop so that this function can be inlined
}
dd.wrPos = dstPos
return dstPos - dstBase
}
// readFlush returns a slice of the historical buffer that is ready to be
// emitted to the user. The data returned by readFlush must be fully consumed
// before calling any other dictDecoder methods.
func (dd *dictDecoder) readFlush() []byte {
toRead := dd.hist[dd.rdPos:dd.wrPos]
dd.rdPos = dd.wrPos
if dd.wrPos == len(dd.hist) {
dd.wrPos, dd.rdPos = 0, 0
dd.full = true
}
return toRead
}

View File

@ -0,0 +1,193 @@
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Modified for deflate by Klaus Post (c) 2015.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"encoding/binary"
"fmt"
)
type fastEnc interface {
Encode(dst *tokens, src []byte)
Reset()
}
func newFastEnc(level int) fastEnc {
switch level {
case 1:
return &fastEncL1{fastGen: fastGen{cur: maxStoreBlockSize}}
case 2:
return &fastEncL2{fastGen: fastGen{cur: maxStoreBlockSize}}
case 3:
return &fastEncL3{fastGen: fastGen{cur: maxStoreBlockSize}}
case 4:
return &fastEncL4{fastGen: fastGen{cur: maxStoreBlockSize}}
case 5:
return &fastEncL5{fastGen: fastGen{cur: maxStoreBlockSize}}
case 6:
return &fastEncL6{fastGen: fastGen{cur: maxStoreBlockSize}}
default:
panic("invalid level specified")
}
}
const (
tableBits = 15 // Bits used in the table
tableSize = 1 << tableBits // Size of the table
tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
baseMatchOffset = 1 // The smallest match offset
baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
maxMatchOffset = 1 << 15 // The largest match offset
bTableBits = 17 // Bits used in the big tables
bTableSize = 1 << bTableBits // Size of the table
allocHistory = maxStoreBlockSize * 5 // Size to preallocate for history.
bufferReset = (1 << 31) - allocHistory - maxStoreBlockSize - 1 // Reset the buffer offset when reaching this.
)
const (
prime3bytes = 506832829
prime4bytes = 2654435761
prime5bytes = 889523592379
prime6bytes = 227718039650203
prime7bytes = 58295818150454627
prime8bytes = 0xcf1bbcdcb7a56463
)
func load3232(b []byte, i int32) uint32 {
return binary.LittleEndian.Uint32(b[i:])
}
func load6432(b []byte, i int32) uint64 {
return binary.LittleEndian.Uint64(b[i:])
}
type tableEntry struct {
offset int32
}
// fastGen maintains the table for matches,
// and the previous byte block for level 2.
// This is the generic implementation.
type fastGen struct {
hist []byte
cur int32
}
func (e *fastGen) addBlock(src []byte) int32 {
// check if we have space already
if len(e.hist)+len(src) > cap(e.hist) {
if cap(e.hist) == 0 {
e.hist = make([]byte, 0, allocHistory)
} else {
if cap(e.hist) < maxMatchOffset*2 {
panic("unexpected buffer size")
}
// Move down
offset := int32(len(e.hist)) - maxMatchOffset
// copy(e.hist[0:maxMatchOffset], e.hist[offset:])
*(*[maxMatchOffset]byte)(e.hist) = *(*[maxMatchOffset]byte)(e.hist[offset:])
e.cur += offset
e.hist = e.hist[:maxMatchOffset]
}
}
s := int32(len(e.hist))
e.hist = append(e.hist, src...)
return s
}
type tableEntryPrev struct {
Cur tableEntry
Prev tableEntry
}
// hash7 returns the hash of the lowest 7 bytes of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <64.
func hash7(u uint64, h uint8) uint32 {
return uint32(((u << (64 - 56)) * prime7bytes) >> ((64 - h) & reg8SizeMask64))
}
// hashLen returns a hash of the lowest mls bytes of with length output bits.
// mls must be >=3 and <=8. Any other value will return hash for 4 bytes.
// length should always be < 32.
// Preferably length and mls should be a constant for inlining.
func hashLen(u uint64, length, mls uint8) uint32 {
switch mls {
case 3:
return (uint32(u<<8) * prime3bytes) >> (32 - length)
case 5:
return uint32(((u << (64 - 40)) * prime5bytes) >> (64 - length))
case 6:
return uint32(((u << (64 - 48)) * prime6bytes) >> (64 - length))
case 7:
return uint32(((u << (64 - 56)) * prime7bytes) >> (64 - length))
case 8:
return uint32((u * prime8bytes) >> (64 - length))
default:
return (uint32(u) * prime4bytes) >> (32 - length)
}
}
// matchlen will return the match length between offsets and t in src.
// The maximum length returned is maxMatchLength - 4.
// It is assumed that s > t, that t >=0 and s < len(src).
func (e *fastGen) matchlen(s, t int32, src []byte) int32 {
if debugDecode {
if t >= s {
panic(fmt.Sprint("t >=s:", t, s))
}
if int(s) >= len(src) {
panic(fmt.Sprint("s >= len(src):", s, len(src)))
}
if t < 0 {
panic(fmt.Sprint("t < 0:", t))
}
if s-t > maxMatchOffset {
panic(fmt.Sprint(s, "-", t, "(", s-t, ") > maxMatchLength (", maxMatchOffset, ")"))
}
}
s1 := int(s) + maxMatchLength - 4
if s1 > len(src) {
s1 = len(src)
}
// Extend the match to be as long as possible.
return int32(matchLen(src[s:s1], src[t:]))
}
// matchlenLong will return the match length between offsets and t in src.
// It is assumed that s > t, that t >=0 and s < len(src).
func (e *fastGen) matchlenLong(s, t int32, src []byte) int32 {
if debugDeflate {
if t >= s {
panic(fmt.Sprint("t >=s:", t, s))
}
if int(s) >= len(src) {
panic(fmt.Sprint("s >= len(src):", s, len(src)))
}
if t < 0 {
panic(fmt.Sprint("t < 0:", t))
}
if s-t > maxMatchOffset {
panic(fmt.Sprint(s, "-", t, "(", s-t, ") > maxMatchLength (", maxMatchOffset, ")"))
}
}
// Extend the match to be as long as possible.
return int32(matchLen(src[s:], src[t:]))
}
// Reset the encoding table.
func (e *fastGen) Reset() {
if cap(e.hist) < allocHistory {
e.hist = make([]byte, 0, allocHistory)
}
// We offset current position so everything will be out of reach.
// If we are above the buffer reset it will be cleared anyway since len(hist) == 0.
if e.cur <= bufferReset {
e.cur += maxMatchOffset + int32(len(e.hist))
}
e.hist = e.hist[:0]
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,417 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"math"
"math/bits"
)
const (
maxBitsLimit = 16
// number of valid literals
literalCount = 286
)
// hcode is a huffman code with a bit code and bit length.
type hcode uint32
func (h hcode) len() uint8 {
return uint8(h)
}
func (h hcode) code64() uint64 {
return uint64(h >> 8)
}
func (h hcode) zero() bool {
return h == 0
}
type huffmanEncoder struct {
codes []hcode
bitCount [17]int32
// Allocate a reusable buffer with the longest possible frequency table.
// Possible lengths are codegenCodeCount, offsetCodeCount and literalCount.
// The largest of these is literalCount, so we allocate for that case.
freqcache [literalCount + 1]literalNode
}
type literalNode struct {
literal uint16
freq uint16
}
// A levelInfo describes the state of the constructed tree for a given depth.
type levelInfo struct {
// Our level. for better printing
level int32
// The frequency of the last node at this level
lastFreq int32
// The frequency of the next character to add to this level
nextCharFreq int32
// The frequency of the next pair (from level below) to add to this level.
// Only valid if the "needed" value of the next lower level is 0.
nextPairFreq int32
// The number of chains remaining to generate for this level before moving
// up to the next level
needed int32
}
// set sets the code and length of an hcode.
func (h *hcode) set(code uint16, length uint8) {
*h = hcode(length) | (hcode(code) << 8)
}
func newhcode(code uint16, length uint8) hcode {
return hcode(length) | (hcode(code) << 8)
}
func reverseBits(number uint16, bitLength byte) uint16 {
return bits.Reverse16(number << ((16 - bitLength) & 15))
}
func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxUint16} }
func newHuffmanEncoder(size int) *huffmanEncoder {
// Make capacity to next power of two.
c := uint(bits.Len32(uint32(size - 1)))
return &huffmanEncoder{codes: make([]hcode, size, 1<<c)}
}
// Generates a HuffmanCode corresponding to the fixed literal table
func generateFixedLiteralEncoding() *huffmanEncoder {
h := newHuffmanEncoder(literalCount)
codes := h.codes
var ch uint16
for ch = 0; ch < literalCount; ch++ {
var bits uint16
var size uint8
switch {
case ch < 144:
// size 8, 000110000 .. 10111111
bits = ch + 48
size = 8
case ch < 256:
// size 9, 110010000 .. 111111111
bits = ch + 400 - 144
size = 9
case ch < 280:
// size 7, 0000000 .. 0010111
bits = ch - 256
size = 7
default:
// size 8, 11000000 .. 11000111
bits = ch + 192 - 280
size = 8
}
codes[ch] = newhcode(reverseBits(bits, size), size)
}
return h
}
func generateFixedOffsetEncoding() *huffmanEncoder {
h := newHuffmanEncoder(30)
codes := h.codes
for ch := range codes {
codes[ch] = newhcode(reverseBits(uint16(ch), 5), 5)
}
return h
}
var fixedLiteralEncoding = generateFixedLiteralEncoding()
var fixedOffsetEncoding = generateFixedOffsetEncoding()
func (h *huffmanEncoder) bitLength(freq []uint16) int {
var total int
for i, f := range freq {
if f != 0 {
total += int(f) * int(h.codes[i].len())
}
}
return total
}
func (h *huffmanEncoder) bitLengthRaw(b []byte) int {
var total int
for _, f := range b {
total += int(h.codes[f].len())
}
return total
}
// canReuseBits returns the number of bits or math.MaxInt32 if the encoder cannot be reused.
func (h *huffmanEncoder) canReuseBits(freq []uint16) int {
var total int
for i, f := range freq {
if f != 0 {
code := h.codes[i]
if code.zero() {
return math.MaxInt32
}
total += int(f) * int(code.len())
}
}
return total
}
// Return the number of literals assigned to each bit size in the Huffman encoding
//
// This method is only called when list.length >= 3
// The cases of 0, 1, and 2 literals are handled by special case code.
//
// list An array of the literals with non-zero frequencies
//
// and their associated frequencies. The array is in order of increasing
// frequency, and has as its last element a special element with frequency
// MaxInt32
//
// maxBits The maximum number of bits that should be used to encode any literal.
//
// Must be less than 16.
//
// return An integer array in which array[i] indicates the number of literals
//
// that should be encoded in i bits.
func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
if maxBits >= maxBitsLimit {
panic("flate: maxBits too large")
}
n := int32(len(list))
list = list[0 : n+1]
list[n] = maxNode()
// The tree can't have greater depth than n - 1, no matter what. This
// saves a little bit of work in some small cases
if maxBits > n-1 {
maxBits = n - 1
}
// Create information about each of the levels.
// A bogus "Level 0" whose sole purpose is so that
// level1.prev.needed==0. This makes level1.nextPairFreq
// be a legitimate value that never gets chosen.
var levels [maxBitsLimit]levelInfo
// leafCounts[i] counts the number of literals at the left
// of ancestors of the rightmost node at level i.
// leafCounts[i][j] is the number of literals at the left
// of the level j ancestor.
var leafCounts [maxBitsLimit][maxBitsLimit]int32
// Descending to only have 1 bounds check.
l2f := int32(list[2].freq)
l1f := int32(list[1].freq)
l0f := int32(list[0].freq) + int32(list[1].freq)
for level := int32(1); level <= maxBits; level++ {
// For every level, the first two items are the first two characters.
// We initialize the levels as if we had already figured this out.
levels[level] = levelInfo{
level: level,
lastFreq: l1f,
nextCharFreq: l2f,
nextPairFreq: l0f,
}
leafCounts[level][level] = 2
if level == 1 {
levels[level].nextPairFreq = math.MaxInt32
}
}
// We need a total of 2*n - 2 items at top level and have already generated 2.
levels[maxBits].needed = 2*n - 4
level := uint32(maxBits)
for level < 16 {
l := &levels[level]
if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
// We've run out of both leafs and pairs.
// End all calculations for this level.
// To make sure we never come back to this level or any lower level,
// set nextPairFreq impossibly large.
l.needed = 0
levels[level+1].nextPairFreq = math.MaxInt32
level++
continue
}
prevFreq := l.lastFreq
if l.nextCharFreq < l.nextPairFreq {
// The next item on this row is a leaf node.
n := leafCounts[level][level] + 1
l.lastFreq = l.nextCharFreq
// Lower leafCounts are the same of the previous node.
leafCounts[level][level] = n
e := list[n]
if e.literal < math.MaxUint16 {
l.nextCharFreq = int32(e.freq)
} else {
l.nextCharFreq = math.MaxInt32
}
} else {
// The next item on this row is a pair from the previous row.
// nextPairFreq isn't valid until we generate two
// more values in the level below
l.lastFreq = l.nextPairFreq
// Take leaf counts from the lower level, except counts[level] remains the same.
if true {
save := leafCounts[level][level]
leafCounts[level] = leafCounts[level-1]
leafCounts[level][level] = save
} else {
copy(leafCounts[level][:level], leafCounts[level-1][:level])
}
levels[l.level-1].needed = 2
}
if l.needed--; l.needed == 0 {
// We've done everything we need to do for this level.
// Continue calculating one level up. Fill in nextPairFreq
// of that level with the sum of the two nodes we've just calculated on
// this level.
if l.level == maxBits {
// All done!
break
}
levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
level++
} else {
// If we stole from below, move down temporarily to replenish it.
for levels[level-1].needed > 0 {
level--
}
}
}
// Somethings is wrong if at the end, the top level is null or hasn't used
// all of the leaves.
if leafCounts[maxBits][maxBits] != n {
panic("leafCounts[maxBits][maxBits] != n")
}
bitCount := h.bitCount[:maxBits+1]
bits := 1
counts := &leafCounts[maxBits]
for level := maxBits; level > 0; level-- {
// chain.leafCount gives the number of literals requiring at least "bits"
// bits to encode.
bitCount[bits] = counts[level] - counts[level-1]
bits++
}
return bitCount
}
// Look at the leaves and assign them a bit count and an encoding as specified
// in RFC 1951 3.2.2
func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
code := uint16(0)
for n, bits := range bitCount {
code <<= 1
if n == 0 || bits == 0 {
continue
}
// The literals list[len(list)-bits] .. list[len(list)-bits]
// are encoded using "bits" bits, and get the values
// code, code + 1, .... The code values are
// assigned in literal order (not frequency order).
chunk := list[len(list)-int(bits):]
sortByLiteral(chunk)
for _, node := range chunk {
h.codes[node.literal] = newhcode(reverseBits(code, uint8(n)), uint8(n))
code++
}
list = list[0 : len(list)-int(bits)]
}
}
// Update this Huffman Code object to be the minimum code for the specified frequency count.
//
// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
// maxBits The maximum number of bits to use for any literal.
func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
list := h.freqcache[:len(freq)+1]
codes := h.codes[:len(freq)]
// Number of non-zero literals
count := 0
// Set list to be the set of all non-zero literals and their frequencies
for i, f := range freq {
if f != 0 {
list[count] = literalNode{uint16(i), f}
count++
} else {
codes[i] = 0
}
}
list[count] = literalNode{}
list = list[:count]
if count <= 2 {
// Handle the small cases here, because they are awkward for the general case code. With
// two or fewer literals, everything has bit length 1.
for i, node := range list {
// "list" is in order of increasing literal value.
h.codes[node.literal].set(uint16(i), 1)
}
return
}
sortByFreq(list)
// Get the number of literals for each bit count
bitCount := h.bitCounts(list, maxBits)
// And do the assignment
h.assignEncodingAndSize(bitCount, list)
}
// atLeastOne clamps the result between 1 and 15.
func atLeastOne(v float32) float32 {
if v < 1 {
return 1
}
if v > 15 {
return 15
}
return v
}
func histogram(b []byte, h []uint16) {
if true && len(b) >= 8<<10 {
// Split for bigger inputs
histogramSplit(b, h)
} else {
h = h[:256]
for _, t := range b {
h[t]++
}
}
}
func histogramSplit(b []byte, h []uint16) {
// Tested, and slightly faster than 2-way.
// Writing to separate arrays and combining is also slightly slower.
h = h[:256]
for len(b)&3 != 0 {
h[b[0]]++
b = b[1:]
}
n := len(b) / 4
x, y, z, w := b[:n], b[n:], b[n+n:], b[n+n+n:]
y, z, w = y[:len(x)], z[:len(x)], w[:len(x)]
for i, t := range x {
v0 := &h[t]
v1 := &h[y[i]]
v3 := &h[w[i]]
v2 := &h[z[i]]
*v0++
*v1++
*v2++
*v3++
}
}

View File

@ -0,0 +1,159 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
// Sort sorts data.
// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
// data.Less and data.Swap. The sort is not guaranteed to be stable.
func sortByFreq(data []literalNode) {
n := len(data)
quickSortByFreq(data, 0, n, maxDepth(n))
}
func quickSortByFreq(data []literalNode, a, b, maxDepth int) {
for b-a > 12 { // Use ShellSort for slices <= 12 elements
if maxDepth == 0 {
heapSort(data, a, b)
return
}
maxDepth--
mlo, mhi := doPivotByFreq(data, a, b)
// Avoiding recursion on the larger subproblem guarantees
// a stack depth of at most lg(b-a).
if mlo-a < b-mhi {
quickSortByFreq(data, a, mlo, maxDepth)
a = mhi // i.e., quickSortByFreq(data, mhi, b)
} else {
quickSortByFreq(data, mhi, b, maxDepth)
b = mlo // i.e., quickSortByFreq(data, a, mlo)
}
}
if b-a > 1 {
// Do ShellSort pass with gap 6
// It could be written in this simplified form cause b-a <= 12
for i := a + 6; i < b; i++ {
if data[i].freq == data[i-6].freq && data[i].literal < data[i-6].literal || data[i].freq < data[i-6].freq {
data[i], data[i-6] = data[i-6], data[i]
}
}
insertionSortByFreq(data, a, b)
}
}
func doPivotByFreq(data []literalNode, lo, hi int) (midlo, midhi int) {
m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
if hi-lo > 40 {
// Tukey's ``Ninther,'' median of three medians of three.
s := (hi - lo) / 8
medianOfThreeSortByFreq(data, lo, lo+s, lo+2*s)
medianOfThreeSortByFreq(data, m, m-s, m+s)
medianOfThreeSortByFreq(data, hi-1, hi-1-s, hi-1-2*s)
}
medianOfThreeSortByFreq(data, lo, m, hi-1)
// Invariants are:
// data[lo] = pivot (set up by ChoosePivot)
// data[lo < i < a] < pivot
// data[a <= i < b] <= pivot
// data[b <= i < c] unexamined
// data[c <= i < hi-1] > pivot
// data[hi-1] >= pivot
pivot := lo
a, c := lo+1, hi-1
for ; a < c && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ {
}
b := a
for {
for ; b < c && (data[pivot].freq == data[b].freq && data[pivot].literal > data[b].literal || data[pivot].freq > data[b].freq); b++ { // data[b] <= pivot
}
for ; b < c && (data[pivot].freq == data[c-1].freq && data[pivot].literal < data[c-1].literal || data[pivot].freq < data[c-1].freq); c-- { // data[c-1] > pivot
}
if b >= c {
break
}
// data[b] > pivot; data[c-1] <= pivot
data[b], data[c-1] = data[c-1], data[b]
b++
c--
}
// If hi-c<3 then there are duplicates (by property of median of nine).
// Let's be a bit more conservative, and set border to 5.
protect := hi-c < 5
if !protect && hi-c < (hi-lo)/4 {
// Lets test some points for equality to pivot
dups := 0
if data[pivot].freq == data[hi-1].freq && data[pivot].literal > data[hi-1].literal || data[pivot].freq > data[hi-1].freq { // data[hi-1] = pivot
data[c], data[hi-1] = data[hi-1], data[c]
c++
dups++
}
if data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq { // data[b-1] = pivot
b--
dups++
}
// m-lo = (hi-lo)/2 > 6
// b-lo > (hi-lo)*3/4-1 > 8
// ==> m < b ==> data[m] <= pivot
if data[m].freq == data[pivot].freq && data[m].literal > data[pivot].literal || data[m].freq > data[pivot].freq { // data[m] = pivot
data[m], data[b-1] = data[b-1], data[m]
b--
dups++
}
// if at least 2 points are equal to pivot, assume skewed distribution
protect = dups > 1
}
if protect {
// Protect against a lot of duplicates
// Add invariant:
// data[a <= i < b] unexamined
// data[b <= i < c] = pivot
for {
for ; a < b && (data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq); b-- { // data[b] == pivot
}
for ; a < b && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ { // data[a] < pivot
}
if a >= b {
break
}
// data[a] == pivot; data[b-1] < pivot
data[a], data[b-1] = data[b-1], data[a]
a++
b--
}
}
// Swap pivot into middle
data[pivot], data[b-1] = data[b-1], data[pivot]
return b - 1, c
}
// Insertion sort
func insertionSortByFreq(data []literalNode, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && (data[j].freq == data[j-1].freq && data[j].literal < data[j-1].literal || data[j].freq < data[j-1].freq); j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
// quickSortByFreq, loosely following Bentley and McIlroy,
// ``Engineering a Sort Function,'' SP&E November 1993.
// medianOfThreeSortByFreq moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
func medianOfThreeSortByFreq(data []literalNode, m1, m0, m2 int) {
// sort 3 elements
if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq {
data[m1], data[m0] = data[m0], data[m1]
}
// data[m0] <= data[m1]
if data[m2].freq == data[m1].freq && data[m2].literal < data[m1].literal || data[m2].freq < data[m1].freq {
data[m2], data[m1] = data[m1], data[m2]
// data[m0] <= data[m2] && data[m1] < data[m2]
if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq {
data[m1], data[m0] = data[m0], data[m1]
}
}
// now data[m0] <= data[m1] <= data[m2]
}

View File

@ -0,0 +1,201 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
// Sort sorts data.
// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
// data.Less and data.Swap. The sort is not guaranteed to be stable.
func sortByLiteral(data []literalNode) {
n := len(data)
quickSort(data, 0, n, maxDepth(n))
}
func quickSort(data []literalNode, a, b, maxDepth int) {
for b-a > 12 { // Use ShellSort for slices <= 12 elements
if maxDepth == 0 {
heapSort(data, a, b)
return
}
maxDepth--
mlo, mhi := doPivot(data, a, b)
// Avoiding recursion on the larger subproblem guarantees
// a stack depth of at most lg(b-a).
if mlo-a < b-mhi {
quickSort(data, a, mlo, maxDepth)
a = mhi // i.e., quickSort(data, mhi, b)
} else {
quickSort(data, mhi, b, maxDepth)
b = mlo // i.e., quickSort(data, a, mlo)
}
}
if b-a > 1 {
// Do ShellSort pass with gap 6
// It could be written in this simplified form cause b-a <= 12
for i := a + 6; i < b; i++ {
if data[i].literal < data[i-6].literal {
data[i], data[i-6] = data[i-6], data[i]
}
}
insertionSort(data, a, b)
}
}
func heapSort(data []literalNode, a, b int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDown(data, i, hi, first)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data[first], data[first+i] = data[first+i], data[first]
siftDown(data, lo, i, first)
}
}
// siftDown implements the heap property on data[lo, hi).
// first is an offset into the array where the root of the heap lies.
func siftDown(data []literalNode, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && data[first+child].literal < data[first+child+1].literal {
child++
}
if data[first+root].literal > data[first+child].literal {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
root = child
}
}
func doPivot(data []literalNode, lo, hi int) (midlo, midhi int) {
m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
if hi-lo > 40 {
// Tukey's ``Ninther,'' median of three medians of three.
s := (hi - lo) / 8
medianOfThree(data, lo, lo+s, lo+2*s)
medianOfThree(data, m, m-s, m+s)
medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
}
medianOfThree(data, lo, m, hi-1)
// Invariants are:
// data[lo] = pivot (set up by ChoosePivot)
// data[lo < i < a] < pivot
// data[a <= i < b] <= pivot
// data[b <= i < c] unexamined
// data[c <= i < hi-1] > pivot
// data[hi-1] >= pivot
pivot := lo
a, c := lo+1, hi-1
for ; a < c && data[a].literal < data[pivot].literal; a++ {
}
b := a
for {
for ; b < c && data[pivot].literal > data[b].literal; b++ { // data[b] <= pivot
}
for ; b < c && data[pivot].literal < data[c-1].literal; c-- { // data[c-1] > pivot
}
if b >= c {
break
}
// data[b] > pivot; data[c-1] <= pivot
data[b], data[c-1] = data[c-1], data[b]
b++
c--
}
// If hi-c<3 then there are duplicates (by property of median of nine).
// Let's be a bit more conservative, and set border to 5.
protect := hi-c < 5
if !protect && hi-c < (hi-lo)/4 {
// Lets test some points for equality to pivot
dups := 0
if data[pivot].literal > data[hi-1].literal { // data[hi-1] = pivot
data[c], data[hi-1] = data[hi-1], data[c]
c++
dups++
}
if data[b-1].literal > data[pivot].literal { // data[b-1] = pivot
b--
dups++
}
// m-lo = (hi-lo)/2 > 6
// b-lo > (hi-lo)*3/4-1 > 8
// ==> m < b ==> data[m] <= pivot
if data[m].literal > data[pivot].literal { // data[m] = pivot
data[m], data[b-1] = data[b-1], data[m]
b--
dups++
}
// if at least 2 points are equal to pivot, assume skewed distribution
protect = dups > 1
}
if protect {
// Protect against a lot of duplicates
// Add invariant:
// data[a <= i < b] unexamined
// data[b <= i < c] = pivot
for {
for ; a < b && data[b-1].literal > data[pivot].literal; b-- { // data[b] == pivot
}
for ; a < b && data[a].literal < data[pivot].literal; a++ { // data[a] < pivot
}
if a >= b {
break
}
// data[a] == pivot; data[b-1] < pivot
data[a], data[b-1] = data[b-1], data[a]
a++
b--
}
}
// Swap pivot into middle
data[pivot], data[b-1] = data[b-1], data[pivot]
return b - 1, c
}
// Insertion sort
func insertionSort(data []literalNode, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && data[j].literal < data[j-1].literal; j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
// maxDepth returns a threshold at which quicksort should switch
// to heapsort. It returns 2*ceil(lg(n+1)).
func maxDepth(n int) int {
var depth int
for i := n; i > 0; i >>= 1 {
depth++
}
return depth * 2
}
// medianOfThree moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
func medianOfThree(data []literalNode, m1, m0, m2 int) {
// sort 3 elements
if data[m1].literal < data[m0].literal {
data[m1], data[m0] = data[m0], data[m1]
}
// data[m0] <= data[m1]
if data[m2].literal < data[m1].literal {
data[m2], data[m1] = data[m1], data[m2]
// data[m0] <= data[m2] && data[m1] < data[m2]
if data[m1].literal < data[m0].literal {
data[m1], data[m0] = data[m0], data[m1]
}
}
// now data[m0] <= data[m1] <= data[m2]
}

View File

@ -0,0 +1,829 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package flate implements the DEFLATE compressed data format, described in
// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file
// formats.
package flate
import (
"bufio"
"compress/flate"
"fmt"
"io"
"math/bits"
"sync"
)
const (
maxCodeLen = 16 // max length of Huffman code
maxCodeLenMask = 15 // mask for max length of Huffman code
// The next three numbers come from the RFC section 3.2.7, with the
// additional proviso in section 3.2.5 which implies that distance codes
// 30 and 31 should never occur in compressed data.
maxNumLit = 286
maxNumDist = 30
numCodes = 19 // number of codes in Huffman meta-code
debugDecode = false
)
// Value of length - 3 and extra bits.
type lengthExtra struct {
length, extra uint8
}
var decCodeToLen = [32]lengthExtra{{length: 0x0, extra: 0x0}, {length: 0x1, extra: 0x0}, {length: 0x2, extra: 0x0}, {length: 0x3, extra: 0x0}, {length: 0x4, extra: 0x0}, {length: 0x5, extra: 0x0}, {length: 0x6, extra: 0x0}, {length: 0x7, extra: 0x0}, {length: 0x8, extra: 0x1}, {length: 0xa, extra: 0x1}, {length: 0xc, extra: 0x1}, {length: 0xe, extra: 0x1}, {length: 0x10, extra: 0x2}, {length: 0x14, extra: 0x2}, {length: 0x18, extra: 0x2}, {length: 0x1c, extra: 0x2}, {length: 0x20, extra: 0x3}, {length: 0x28, extra: 0x3}, {length: 0x30, extra: 0x3}, {length: 0x38, extra: 0x3}, {length: 0x40, extra: 0x4}, {length: 0x50, extra: 0x4}, {length: 0x60, extra: 0x4}, {length: 0x70, extra: 0x4}, {length: 0x80, extra: 0x5}, {length: 0xa0, extra: 0x5}, {length: 0xc0, extra: 0x5}, {length: 0xe0, extra: 0x5}, {length: 0xff, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}}
var bitMask32 = [32]uint32{
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF,
0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF,
0x1ffff, 0x3ffff, 0x7FFFF, 0xfFFFF, 0x1fFFFF, 0x3fFFFF, 0x7fFFFF, 0xffFFFF,
0x1ffFFFF, 0x3ffFFFF, 0x7ffFFFF, 0xfffFFFF, 0x1fffFFFF, 0x3fffFFFF, 0x7fffFFFF,
} // up to 32 bits
// Initialize the fixedHuffmanDecoder only once upon first use.
var fixedOnce sync.Once
var fixedHuffmanDecoder huffmanDecoder
// A CorruptInputError reports the presence of corrupt input at a given offset.
type CorruptInputError = flate.CorruptInputError
// An InternalError reports an error in the flate code itself.
type InternalError string
func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
// A ReadError reports an error encountered while reading input.
//
// Deprecated: No longer returned.
type ReadError = flate.ReadError
// A WriteError reports an error encountered while writing output.
//
// Deprecated: No longer returned.
type WriteError = flate.WriteError
// Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
// to switch to a new underlying Reader. This permits reusing a ReadCloser
// instead of allocating a new one.
type Resetter interface {
// Reset discards any buffered data and resets the Resetter as if it was
// newly initialized with the given reader.
Reset(r io.Reader, dict []byte) error
}
// The data structure for decoding Huffman tables is based on that of
// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
// For codes smaller than the table width, there are multiple entries
// (each combination of trailing bits has the same value). For codes
// larger than the table width, the table contains a link to an overflow
// table. The width of each entry in the link table is the maximum code
// size minus the chunk width.
//
// Note that you can do a lookup in the table even without all bits
// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
// have the property that shorter codes come before longer ones, the
// bit length estimate in the result is a lower bound on the actual
// number of bits.
//
// See the following:
// http://www.gzip.org/algorithm.txt
// chunk & 15 is number of bits
// chunk >> 4 is value, including table link
const (
huffmanChunkBits = 9
huffmanNumChunks = 1 << huffmanChunkBits
huffmanCountMask = 15
huffmanValueShift = 4
)
type huffmanDecoder struct {
maxRead int // the maximum number of bits we can read and not overread
chunks *[huffmanNumChunks]uint16 // chunks as described above
links [][]uint16 // overflow links
linkMask uint32 // mask the width of the link table
}
// Initialize Huffman decoding tables from array of code lengths.
// Following this function, h is guaranteed to be initialized into a complete
// tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
// degenerate case where the tree has only a single symbol with length 1. Empty
// trees are permitted.
func (h *huffmanDecoder) init(lengths []int) bool {
// Sanity enables additional runtime tests during Huffman
// table construction. It's intended to be used during
// development to supplement the currently ad-hoc unit tests.
const sanity = false
if h.chunks == nil {
h.chunks = new([huffmanNumChunks]uint16)
}
if h.maxRead != 0 {
*h = huffmanDecoder{chunks: h.chunks, links: h.links}
}
// Count number of codes of each length,
// compute maxRead and max length.
var count [maxCodeLen]int
var min, max int
for _, n := range lengths {
if n == 0 {
continue
}
if min == 0 || n < min {
min = n
}
if n > max {
max = n
}
count[n&maxCodeLenMask]++
}
// Empty tree. The decompressor.huffSym function will fail later if the tree
// is used. Technically, an empty tree is only valid for the HDIST tree and
// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
// is guaranteed to fail since it will attempt to use the tree to decode the
// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
// guaranteed to fail later since the compressed data section must be
// composed of at least one symbol (the end-of-block marker).
if max == 0 {
return true
}
code := 0
var nextcode [maxCodeLen]int
for i := min; i <= max; i++ {
code <<= 1
nextcode[i&maxCodeLenMask] = code
code += count[i&maxCodeLenMask]
}
// Check that the coding is complete (i.e., that we've
// assigned all 2-to-the-max possible bit sequences).
// Exception: To be compatible with zlib, we also need to
// accept degenerate single-code codings. See also
// TestDegenerateHuffmanCoding.
if code != 1<<uint(max) && !(code == 1 && max == 1) {
if debugDecode {
fmt.Println("coding failed, code, max:", code, max, code == 1<<uint(max), code == 1 && max == 1, "(one should be true)")
}
return false
}
h.maxRead = min
chunks := h.chunks[:]
for i := range chunks {
chunks[i] = 0
}
if max > huffmanChunkBits {
numLinks := 1 << (uint(max) - huffmanChunkBits)
h.linkMask = uint32(numLinks - 1)
// create link tables
link := nextcode[huffmanChunkBits+1] >> 1
if cap(h.links) < huffmanNumChunks-link {
h.links = make([][]uint16, huffmanNumChunks-link)
} else {
h.links = h.links[:huffmanNumChunks-link]
}
for j := uint(link); j < huffmanNumChunks; j++ {
reverse := int(bits.Reverse16(uint16(j)))
reverse >>= uint(16 - huffmanChunkBits)
off := j - uint(link)
if sanity && h.chunks[reverse] != 0 {
panic("impossible: overwriting existing chunk")
}
h.chunks[reverse] = uint16(off<<huffmanValueShift | (huffmanChunkBits + 1))
if cap(h.links[off]) < numLinks {
h.links[off] = make([]uint16, numLinks)
} else {
h.links[off] = h.links[off][:numLinks]
}
}
} else {
h.links = h.links[:0]
}
for i, n := range lengths {
if n == 0 {
continue
}
code := nextcode[n]
nextcode[n]++
chunk := uint16(i<<huffmanValueShift | n)
reverse := int(bits.Reverse16(uint16(code)))
reverse >>= uint(16 - n)
if n <= huffmanChunkBits {
for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
// We should never need to overwrite
// an existing chunk. Also, 0 is
// never a valid chunk, because the
// lower 4 "count" bits should be
// between 1 and 15.
if sanity && h.chunks[off] != 0 {
panic("impossible: overwriting existing chunk")
}
h.chunks[off] = chunk
}
} else {
j := reverse & (huffmanNumChunks - 1)
if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
// Longer codes should have been
// associated with a link table above.
panic("impossible: not an indirect chunk")
}
value := h.chunks[j] >> huffmanValueShift
linktab := h.links[value]
reverse >>= huffmanChunkBits
for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
if sanity && linktab[off] != 0 {
panic("impossible: overwriting existing chunk")
}
linktab[off] = chunk
}
}
}
if sanity {
// Above we've sanity checked that we never overwrote
// an existing entry. Here we additionally check that
// we filled the tables completely.
for i, chunk := range h.chunks {
if chunk == 0 {
// As an exception, in the degenerate
// single-code case, we allow odd
// chunks to be missing.
if code == 1 && i%2 == 1 {
continue
}
panic("impossible: missing chunk")
}
}
for _, linktab := range h.links {
for _, chunk := range linktab {
if chunk == 0 {
panic("impossible: missing chunk")
}
}
}
}
return true
}
// Reader is the actual read interface needed by NewReader.
// If the passed in io.Reader does not also have ReadByte,
// the NewReader will introduce its own buffering.
type Reader interface {
io.Reader
io.ByteReader
}
type step uint8
const (
copyData step = iota + 1
nextBlock
huffmanBytesBuffer
huffmanBytesReader
huffmanBufioReader
huffmanStringsReader
huffmanGenericReader
)
// Decompress state.
type decompressor struct {
// Input source.
r Reader
roffset int64
// Huffman decoders for literal/length, distance.
h1, h2 huffmanDecoder
// Length arrays used to define Huffman codes.
bits *[maxNumLit + maxNumDist]int
codebits *[numCodes]int
// Output history, buffer.
dict dictDecoder
// Next step in the decompression,
// and decompression state.
step step
stepState int
err error
toRead []byte
hl, hd *huffmanDecoder
copyLen int
copyDist int
// Temporary buffer (avoids repeated allocation).
buf [4]byte
// Input bits, in top of b.
b uint32
nb uint
final bool
}
func (f *decompressor) nextBlock() {
for f.nb < 1+2 {
if f.err = f.moreBits(); f.err != nil {
return
}
}
f.final = f.b&1 == 1
f.b >>= 1
typ := f.b & 3
f.b >>= 2
f.nb -= 1 + 2
switch typ {
case 0:
f.dataBlock()
if debugDecode {
fmt.Println("stored block")
}
case 1:
// compressed, fixed Huffman tables
f.hl = &fixedHuffmanDecoder
f.hd = nil
f.huffmanBlockDecoder()
if debugDecode {
fmt.Println("predefinied huffman block")
}
case 2:
// compressed, dynamic Huffman tables
if f.err = f.readHuffman(); f.err != nil {
break
}
f.hl = &f.h1
f.hd = &f.h2
f.huffmanBlockDecoder()
if debugDecode {
fmt.Println("dynamic huffman block")
}
default:
// 3 is reserved.
if debugDecode {
fmt.Println("reserved data block encountered")
}
f.err = CorruptInputError(f.roffset)
}
}
func (f *decompressor) Read(b []byte) (int, error) {
for {
if len(f.toRead) > 0 {
n := copy(b, f.toRead)
f.toRead = f.toRead[n:]
if len(f.toRead) == 0 {
return n, f.err
}
return n, nil
}
if f.err != nil {
return 0, f.err
}
f.doStep()
if f.err != nil && len(f.toRead) == 0 {
f.toRead = f.dict.readFlush() // Flush what's left in case of error
}
}
}
// WriteTo implements the io.WriteTo interface for io.Copy and friends.
func (f *decompressor) WriteTo(w io.Writer) (int64, error) {
total := int64(0)
flushed := false
for {
if len(f.toRead) > 0 {
n, err := w.Write(f.toRead)
total += int64(n)
if err != nil {
f.err = err
return total, err
}
if n != len(f.toRead) {
return total, io.ErrShortWrite
}
f.toRead = f.toRead[:0]
}
if f.err != nil && flushed {
if f.err == io.EOF {
return total, nil
}
return total, f.err
}
if f.err == nil {
f.doStep()
}
if len(f.toRead) == 0 && f.err != nil && !flushed {
f.toRead = f.dict.readFlush() // Flush what's left in case of error
flushed = true
}
}
}
func (f *decompressor) Close() error {
if f.err == io.EOF {
return nil
}
return f.err
}
// RFC 1951 section 3.2.7.
// Compression with dynamic Huffman codes
var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
func (f *decompressor) readHuffman() error {
// HLIT[5], HDIST[5], HCLEN[4].
for f.nb < 5+5+4 {
if err := f.moreBits(); err != nil {
return err
}
}
nlit := int(f.b&0x1F) + 257
if nlit > maxNumLit {
if debugDecode {
fmt.Println("nlit > maxNumLit", nlit)
}
return CorruptInputError(f.roffset)
}
f.b >>= 5
ndist := int(f.b&0x1F) + 1
if ndist > maxNumDist {
if debugDecode {
fmt.Println("ndist > maxNumDist", ndist)
}
return CorruptInputError(f.roffset)
}
f.b >>= 5
nclen := int(f.b&0xF) + 4
// numCodes is 19, so nclen is always valid.
f.b >>= 4
f.nb -= 5 + 5 + 4
// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
for i := 0; i < nclen; i++ {
for f.nb < 3 {
if err := f.moreBits(); err != nil {
return err
}
}
f.codebits[codeOrder[i]] = int(f.b & 0x7)
f.b >>= 3
f.nb -= 3
}
for i := nclen; i < len(codeOrder); i++ {
f.codebits[codeOrder[i]] = 0
}
if !f.h1.init(f.codebits[0:]) {
if debugDecode {
fmt.Println("init codebits failed")
}
return CorruptInputError(f.roffset)
}
// HLIT + 257 code lengths, HDIST + 1 code lengths,
// using the code length Huffman code.
for i, n := 0, nlit+ndist; i < n; {
x, err := f.huffSym(&f.h1)
if err != nil {
return err
}
if x < 16 {
// Actual length.
f.bits[i] = x
i++
continue
}
// Repeat previous length or zero.
var rep int
var nb uint
var b int
switch x {
default:
return InternalError("unexpected length code")
case 16:
rep = 3
nb = 2
if i == 0 {
if debugDecode {
fmt.Println("i==0")
}
return CorruptInputError(f.roffset)
}
b = f.bits[i-1]
case 17:
rep = 3
nb = 3
b = 0
case 18:
rep = 11
nb = 7
b = 0
}
for f.nb < nb {
if err := f.moreBits(); err != nil {
if debugDecode {
fmt.Println("morebits:", err)
}
return err
}
}
rep += int(f.b & uint32(1<<(nb&regSizeMaskUint32)-1))
f.b >>= nb & regSizeMaskUint32
f.nb -= nb
if i+rep > n {
if debugDecode {
fmt.Println("i+rep > n", i, rep, n)
}
return CorruptInputError(f.roffset)
}
for j := 0; j < rep; j++ {
f.bits[i] = b
i++
}
}
if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
if debugDecode {
fmt.Println("init2 failed")
}
return CorruptInputError(f.roffset)
}
// As an optimization, we can initialize the maxRead bits to read at a time
// for the HLIT tree to the length of the EOB marker since we know that
// every block must terminate with one. This preserves the property that
// we never read any extra bytes after the end of the DEFLATE stream.
if f.h1.maxRead < f.bits[endBlockMarker] {
f.h1.maxRead = f.bits[endBlockMarker]
}
if !f.final {
// If not the final block, the smallest block possible is
// a predefined table, BTYPE=01, with a single EOB marker.
// This will take up 3 + 7 bits.
f.h1.maxRead += 10
}
return nil
}
// Copy a single uncompressed data block from input to output.
func (f *decompressor) dataBlock() {
// Uncompressed.
// Discard current half-byte.
left := (f.nb) & 7
f.nb -= left
f.b >>= left
offBytes := f.nb >> 3
// Unfilled values will be overwritten.
f.buf[0] = uint8(f.b)
f.buf[1] = uint8(f.b >> 8)
f.buf[2] = uint8(f.b >> 16)
f.buf[3] = uint8(f.b >> 24)
f.roffset += int64(offBytes)
f.nb, f.b = 0, 0
// Length then ones-complement of length.
nr, err := io.ReadFull(f.r, f.buf[offBytes:4])
f.roffset += int64(nr)
if err != nil {
f.err = noEOF(err)
return
}
n := uint16(f.buf[0]) | uint16(f.buf[1])<<8
nn := uint16(f.buf[2]) | uint16(f.buf[3])<<8
if nn != ^n {
if debugDecode {
ncomp := ^n
fmt.Println("uint16(nn) != uint16(^n)", nn, ncomp)
}
f.err = CorruptInputError(f.roffset)
return
}
if n == 0 {
f.toRead = f.dict.readFlush()
f.finishBlock()
return
}
f.copyLen = int(n)
f.copyData()
}
// copyData copies f.copyLen bytes from the underlying reader into f.hist.
// It pauses for reads when f.hist is full.
func (f *decompressor) copyData() {
buf := f.dict.writeSlice()
if len(buf) > f.copyLen {
buf = buf[:f.copyLen]
}
cnt, err := io.ReadFull(f.r, buf)
f.roffset += int64(cnt)
f.copyLen -= cnt
f.dict.writeMark(cnt)
if err != nil {
f.err = noEOF(err)
return
}
if f.dict.availWrite() == 0 || f.copyLen > 0 {
f.toRead = f.dict.readFlush()
f.step = copyData
return
}
f.finishBlock()
}
func (f *decompressor) finishBlock() {
if f.final {
if f.dict.availRead() > 0 {
f.toRead = f.dict.readFlush()
}
f.err = io.EOF
}
f.step = nextBlock
}
func (f *decompressor) doStep() {
switch f.step {
case copyData:
f.copyData()
case nextBlock:
f.nextBlock()
case huffmanBytesBuffer:
f.huffmanBytesBuffer()
case huffmanBytesReader:
f.huffmanBytesReader()
case huffmanBufioReader:
f.huffmanBufioReader()
case huffmanStringsReader:
f.huffmanStringsReader()
case huffmanGenericReader:
f.huffmanGenericReader()
default:
panic("BUG: unexpected step state")
}
}
// noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
func noEOF(e error) error {
if e == io.EOF {
return io.ErrUnexpectedEOF
}
return e
}
func (f *decompressor) moreBits() error {
c, err := f.r.ReadByte()
if err != nil {
return noEOF(err)
}
f.roffset++
f.b |= uint32(c) << (f.nb & regSizeMaskUint32)
f.nb += 8
return nil
}
// Read the next Huffman-encoded symbol from f according to h.
func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
// with single element, huffSym must error on these two edge cases. In both
// cases, the chunks slice will be 0 for the invalid sequence, leading it
// satisfy the n == 0 check below.
n := uint(h.maxRead)
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
// but is smart enough to keep local variables in registers, so use nb and b,
// inline call to moreBits and reassign b,nb back to f on return.
nb, b := f.nb, f.b
for {
for nb < n {
c, err := f.r.ReadByte()
if err != nil {
f.b = b
f.nb = nb
return 0, noEOF(err)
}
f.roffset++
b |= uint32(c) << (nb & regSizeMaskUint32)
nb += 8
}
chunk := h.chunks[b&(huffmanNumChunks-1)]
n = uint(chunk & huffmanCountMask)
if n > huffmanChunkBits {
chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
n = uint(chunk & huffmanCountMask)
}
if n <= nb {
if n == 0 {
f.b = b
f.nb = nb
if debugDecode {
fmt.Println("huffsym: n==0")
}
f.err = CorruptInputError(f.roffset)
return 0, f.err
}
f.b = b >> (n & regSizeMaskUint32)
f.nb = nb - n
return int(chunk >> huffmanValueShift), nil
}
}
}
func makeReader(r io.Reader) Reader {
if rr, ok := r.(Reader); ok {
return rr
}
return bufio.NewReader(r)
}
func fixedHuffmanDecoderInit() {
fixedOnce.Do(func() {
// These come from the RFC section 3.2.6.
var bits [288]int
for i := 0; i < 144; i++ {
bits[i] = 8
}
for i := 144; i < 256; i++ {
bits[i] = 9
}
for i := 256; i < 280; i++ {
bits[i] = 7
}
for i := 280; i < 288; i++ {
bits[i] = 8
}
fixedHuffmanDecoder.init(bits[:])
})
}
func (f *decompressor) Reset(r io.Reader, dict []byte) error {
*f = decompressor{
r: makeReader(r),
bits: f.bits,
codebits: f.codebits,
h1: f.h1,
h2: f.h2,
dict: f.dict,
step: nextBlock,
}
f.dict.init(maxMatchOffset, dict)
return nil
}
// NewReader returns a new ReadCloser that can be used
// to read the uncompressed version of r.
// If r does not also implement io.ByteReader,
// the decompressor may read more data than necessary from r.
// It is the caller's responsibility to call Close on the ReadCloser
// when finished reading.
//
// The ReadCloser returned by NewReader also implements Resetter.
func NewReader(r io.Reader) io.ReadCloser {
fixedHuffmanDecoderInit()
var f decompressor
f.r = makeReader(r)
f.bits = new([maxNumLit + maxNumDist]int)
f.codebits = new([numCodes]int)
f.step = nextBlock
f.dict.init(maxMatchOffset, nil)
return &f
}
// NewReaderDict is like NewReader but initializes the reader
// with a preset dictionary. The returned Reader behaves as if
// the uncompressed data stream started with the given dictionary,
// which has already been read. NewReaderDict is typically used
// to read data compressed by NewWriterDict.
//
// The ReadCloser returned by NewReader also implements Resetter.
func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
fixedHuffmanDecoderInit()
var f decompressor
f.r = makeReader(r)
f.bits = new([maxNumLit + maxNumDist]int)
f.codebits = new([numCodes]int)
f.step = nextBlock
f.dict.init(maxMatchOffset, dict)
return &f
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,241 @@
package flate
import (
"encoding/binary"
"fmt"
"math/bits"
)
// fastGen maintains the table for matches,
// and the previous byte block for level 2.
// This is the generic implementation.
type fastEncL1 struct {
fastGen
table [tableSize]tableEntry
}
// EncodeL1 uses a similar algorithm to level 1
func (e *fastEncL1) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
hashBytes = 5
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load6432(src, s)
for {
const skipLog = 5
const doEvery = 2
nextS := s
var candidate tableEntry
for {
nextHash := hashLen(cv, tableBits, hashBytes)
candidate = e.table[nextHash]
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
now := load6432(src, nextS)
e.table[nextHash] = tableEntry{offset: s + e.cur}
nextHash = hashLen(now, tableBits, hashBytes)
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset && uint32(cv) == load3232(src, candidate.offset-e.cur) {
e.table[nextHash] = tableEntry{offset: nextS + e.cur}
break
}
// Do one right away...
cv = now
s = nextS
nextS++
candidate = e.table[nextHash]
now >>= 8
e.table[nextHash] = tableEntry{offset: s + e.cur}
offset = s - (candidate.offset - e.cur)
if offset < maxMatchOffset && uint32(cv) == load3232(src, candidate.offset-e.cur) {
e.table[nextHash] = tableEntry{offset: nextS + e.cur}
break
}
cv = now
s = nextS
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
t := candidate.offset - e.cur
var l = int32(4)
if false {
l = e.matchlenLong(s+4, t+4, src) + 4
} else {
// inlined:
a := src[s+4:]
b := src[t+4:]
for len(a) >= 8 {
if diff := binary.LittleEndian.Uint64(a) ^ binary.LittleEndian.Uint64(b); diff != 0 {
l += int32(bits.TrailingZeros64(diff) >> 3)
break
}
l += 8
a = a[8:]
b = b[8:]
}
if len(a) < 8 {
b = b[:len(a)]
for i := range a {
if a[i] != b[i] {
break
}
l++
}
}
}
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
// Save the match found
if false {
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
} else {
// Inlined...
xoffset := uint32(s - t - baseMatchOffset)
xlength := l
oc := offsetCode(xoffset)
xoffset |= oc << 16
for xlength > 0 {
xl := xlength
if xl > 258 {
if xl > 258+baseMatchLength {
xl = 258
} else {
xl = 258 - baseMatchLength
}
}
xlength -= xl
xl -= baseMatchLength
dst.extraHist[lengthCodes1[uint8(xl)]]++
dst.offHist[oc]++
dst.tokens[dst.n] = token(matchType | uint32(xl)<<lengthShift | xoffset)
dst.n++
}
}
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
// Index first pair after match end.
if int(s+l+8) < len(src) {
cv := load6432(src, s)
e.table[hashLen(cv, tableBits, hashBytes)] = tableEntry{offset: s + e.cur}
}
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load6432(src, s-2)
o := e.cur + s - 2
prevHash := hashLen(x, tableBits, hashBytes)
e.table[prevHash] = tableEntry{offset: o}
x >>= 16
currHash := hashLen(x, tableBits, hashBytes)
candidate = e.table[currHash]
e.table[currHash] = tableEntry{offset: o + 2}
offset := s - (candidate.offset - e.cur)
if offset > maxMatchOffset || uint32(x) != load3232(src, candidate.offset-e.cur) {
cv = x >> 8
s++
break
}
}
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

View File

@ -0,0 +1,214 @@
package flate
import "fmt"
// fastGen maintains the table for matches,
// and the previous byte block for level 2.
// This is the generic implementation.
type fastEncL2 struct {
fastGen
table [bTableSize]tableEntry
}
// EncodeL2 uses a similar algorithm to level 1, but is capable
// of matching across blocks giving better compression at a small slowdown.
func (e *fastEncL2) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
hashBytes = 5
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load6432(src, s)
for {
// When should we start skipping if we haven't found matches in a long while.
const skipLog = 5
const doEvery = 2
nextS := s
var candidate tableEntry
for {
nextHash := hashLen(cv, bTableBits, hashBytes)
s = nextS
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
candidate = e.table[nextHash]
now := load6432(src, nextS)
e.table[nextHash] = tableEntry{offset: s + e.cur}
nextHash = hashLen(now, bTableBits, hashBytes)
offset := s - (candidate.offset - e.cur)
if offset < maxMatchOffset && uint32(cv) == load3232(src, candidate.offset-e.cur) {
e.table[nextHash] = tableEntry{offset: nextS + e.cur}
break
}
// Do one right away...
cv = now
s = nextS
nextS++
candidate = e.table[nextHash]
now >>= 8
e.table[nextHash] = tableEntry{offset: s + e.cur}
offset = s - (candidate.offset - e.cur)
if offset < maxMatchOffset && uint32(cv) == load3232(src, candidate.offset-e.cur) {
break
}
cv = now
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
t := candidate.offset - e.cur
l := e.matchlenLong(s+4, t+4, src) + 4
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
// Index first pair after match end.
if int(s+l+8) < len(src) {
cv := load6432(src, s)
e.table[hashLen(cv, bTableBits, hashBytes)] = tableEntry{offset: s + e.cur}
}
goto emitRemainder
}
// Store every second hash in-between, but offset by 1.
for i := s - l + 2; i < s-5; i += 7 {
x := load6432(src, i)
nextHash := hashLen(x, bTableBits, hashBytes)
e.table[nextHash] = tableEntry{offset: e.cur + i}
// Skip one
x >>= 16
nextHash = hashLen(x, bTableBits, hashBytes)
e.table[nextHash] = tableEntry{offset: e.cur + i + 2}
// Skip one
x >>= 16
nextHash = hashLen(x, bTableBits, hashBytes)
e.table[nextHash] = tableEntry{offset: e.cur + i + 4}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2 to s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load6432(src, s-2)
o := e.cur + s - 2
prevHash := hashLen(x, bTableBits, hashBytes)
prevHash2 := hashLen(x>>8, bTableBits, hashBytes)
e.table[prevHash] = tableEntry{offset: o}
e.table[prevHash2] = tableEntry{offset: o + 1}
currHash := hashLen(x>>16, bTableBits, hashBytes)
candidate = e.table[currHash]
e.table[currHash] = tableEntry{offset: o + 2}
offset := s - (candidate.offset - e.cur)
if offset > maxMatchOffset || uint32(x>>16) != load3232(src, candidate.offset-e.cur) {
cv = x >> 24
s++
break
}
}
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

View File

@ -0,0 +1,241 @@
package flate
import "fmt"
// fastEncL3
type fastEncL3 struct {
fastGen
table [1 << 16]tableEntryPrev
}
// Encode uses a similar algorithm to level 2, will check up to two candidates.
func (e *fastEncL3) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
tableBits = 16
tableSize = 1 << tableBits
hashBytes = 5
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntryPrev{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i]
if v.Cur.offset <= minOff {
v.Cur.offset = 0
} else {
v.Cur.offset = v.Cur.offset - e.cur + maxMatchOffset
}
if v.Prev.offset <= minOff {
v.Prev.offset = 0
} else {
v.Prev.offset = v.Prev.offset - e.cur + maxMatchOffset
}
e.table[i] = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// Skip if too small.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load6432(src, s)
for {
const skipLog = 7
nextS := s
var candidate tableEntry
for {
nextHash := hashLen(cv, tableBits, hashBytes)
s = nextS
nextS = s + 1 + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
candidates := e.table[nextHash]
now := load6432(src, nextS)
// Safe offset distance until s + 4...
minOffset := e.cur + s - (maxMatchOffset - 4)
e.table[nextHash] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur}}
// Check both candidates
candidate = candidates.Cur
if candidate.offset < minOffset {
cv = now
// Previous will also be invalid, we have nothing.
continue
}
if uint32(cv) == load3232(src, candidate.offset-e.cur) {
if candidates.Prev.offset < minOffset || uint32(cv) != load3232(src, candidates.Prev.offset-e.cur) {
break
}
// Both match and are valid, pick longest.
offset := s - (candidate.offset - e.cur)
o2 := s - (candidates.Prev.offset - e.cur)
l1, l2 := matchLen(src[s+4:], src[s-offset+4:]), matchLen(src[s+4:], src[s-o2+4:])
if l2 > l1 {
candidate = candidates.Prev
}
break
} else {
// We only check if value mismatches.
// Offset will always be invalid in other cases.
candidate = candidates.Prev
if candidate.offset > minOffset && uint32(cv) == load3232(src, candidate.offset-e.cur) {
break
}
}
cv = now
}
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
//
t := candidate.offset - e.cur
l := e.matchlenLong(s+4, t+4, src) + 4
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
t += l
// Index first pair after match end.
if int(t+8) < len(src) && t > 0 {
cv = load6432(src, t)
nextHash := hashLen(cv, tableBits, hashBytes)
e.table[nextHash] = tableEntryPrev{
Prev: e.table[nextHash].Cur,
Cur: tableEntry{offset: e.cur + t},
}
}
goto emitRemainder
}
// Store every 5th hash in-between.
for i := s - l + 2; i < s-5; i += 6 {
nextHash := hashLen(load6432(src, i), tableBits, hashBytes)
e.table[nextHash] = tableEntryPrev{
Prev: e.table[nextHash].Cur,
Cur: tableEntry{offset: e.cur + i}}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2 to s.
x := load6432(src, s-2)
prevHash := hashLen(x, tableBits, hashBytes)
e.table[prevHash] = tableEntryPrev{
Prev: e.table[prevHash].Cur,
Cur: tableEntry{offset: e.cur + s - 2},
}
x >>= 8
prevHash = hashLen(x, tableBits, hashBytes)
e.table[prevHash] = tableEntryPrev{
Prev: e.table[prevHash].Cur,
Cur: tableEntry{offset: e.cur + s - 1},
}
x >>= 8
currHash := hashLen(x, tableBits, hashBytes)
candidates := e.table[currHash]
cv = x
e.table[currHash] = tableEntryPrev{
Prev: candidates.Cur,
Cur: tableEntry{offset: s + e.cur},
}
// Check both candidates
candidate = candidates.Cur
minOffset := e.cur + s - (maxMatchOffset - 4)
if candidate.offset > minOffset {
if uint32(cv) == load3232(src, candidate.offset-e.cur) {
// Found a match...
continue
}
candidate = candidates.Prev
if candidate.offset > minOffset && uint32(cv) == load3232(src, candidate.offset-e.cur) {
// Match at prev...
continue
}
}
cv = x >> 8
s++
break
}
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

View File

@ -0,0 +1,221 @@
package flate
import "fmt"
type fastEncL4 struct {
fastGen
table [tableSize]tableEntry
bTable [tableSize]tableEntry
}
func (e *fastEncL4) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
hashShortBytes = 4
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
for i := range e.bTable[:] {
e.bTable[i] = tableEntry{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
for i := range e.bTable[:] {
v := e.bTable[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.bTable[i].offset = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load6432(src, s)
for {
const skipLog = 6
const doEvery = 1
nextS := s
var t int32
for {
nextHashS := hashLen(cv, tableBits, hashShortBytes)
nextHashL := hash7(cv, tableBits)
s = nextS
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
// Fetch a short+long candidate
sCandidate := e.table[nextHashS]
lCandidate := e.bTable[nextHashL]
next := load6432(src, nextS)
entry := tableEntry{offset: s + e.cur}
e.table[nextHashS] = entry
e.bTable[nextHashL] = entry
t = lCandidate.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.offset-e.cur) {
// We got a long match. Use that.
break
}
t = sCandidate.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, sCandidate.offset-e.cur) {
// Found a 4 match...
lCandidate = e.bTable[hash7(next, tableBits)]
// If the next long is a candidate, check if we should use that instead...
lOff := nextS - (lCandidate.offset - e.cur)
if lOff < maxMatchOffset && load3232(src, lCandidate.offset-e.cur) == uint32(next) {
l1, l2 := matchLen(src[s+4:], src[t+4:]), matchLen(src[nextS+4:], src[nextS-lOff+4:])
if l2 > l1 {
s = nextS
t = lCandidate.offset - e.cur
}
}
break
}
cv = next
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
// Extend the 4-byte match as long as possible.
l := e.matchlenLong(s+4, t+4, src) + 4
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
if debugDeflate {
if t >= s {
panic("s-t")
}
if (s - t) > maxMatchOffset {
panic(fmt.Sprintln("mmo", t))
}
if l < baseMatchLength {
panic("bml")
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
// Index first pair after match end.
if int(s+8) < len(src) {
cv := load6432(src, s)
e.table[hashLen(cv, tableBits, hashShortBytes)] = tableEntry{offset: s + e.cur}
e.bTable[hash7(cv, tableBits)] = tableEntry{offset: s + e.cur}
}
goto emitRemainder
}
// Store every 3rd hash in-between
if true {
i := nextS
if i < s-1 {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
t2 := tableEntry{offset: t.offset + 1}
e.bTable[hash7(cv, tableBits)] = t
e.bTable[hash7(cv>>8, tableBits)] = t2
e.table[hashLen(cv>>8, tableBits, hashShortBytes)] = t2
i += 3
for ; i < s-1; i += 3 {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
t2 := tableEntry{offset: t.offset + 1}
e.bTable[hash7(cv, tableBits)] = t
e.bTable[hash7(cv>>8, tableBits)] = t2
e.table[hashLen(cv>>8, tableBits, hashShortBytes)] = t2
}
}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s.
x := load6432(src, s-1)
o := e.cur + s - 1
prevHashS := hashLen(x, tableBits, hashShortBytes)
prevHashL := hash7(x, tableBits)
e.table[prevHashS] = tableEntry{offset: o}
e.bTable[prevHashL] = tableEntry{offset: o}
cv = x >> 8
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

View File

@ -0,0 +1,708 @@
package flate
import "fmt"
type fastEncL5 struct {
fastGen
table [tableSize]tableEntry
bTable [tableSize]tableEntryPrev
}
func (e *fastEncL5) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
hashShortBytes = 4
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
for i := range e.bTable[:] {
e.bTable[i] = tableEntryPrev{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
for i := range e.bTable[:] {
v := e.bTable[i]
if v.Cur.offset <= minOff {
v.Cur.offset = 0
v.Prev.offset = 0
} else {
v.Cur.offset = v.Cur.offset - e.cur + maxMatchOffset
if v.Prev.offset <= minOff {
v.Prev.offset = 0
} else {
v.Prev.offset = v.Prev.offset - e.cur + maxMatchOffset
}
}
e.bTable[i] = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load6432(src, s)
for {
const skipLog = 6
const doEvery = 1
nextS := s
var l int32
var t int32
for {
nextHashS := hashLen(cv, tableBits, hashShortBytes)
nextHashL := hash7(cv, tableBits)
s = nextS
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
// Fetch a short+long candidate
sCandidate := e.table[nextHashS]
lCandidate := e.bTable[nextHashL]
next := load6432(src, nextS)
entry := tableEntry{offset: s + e.cur}
e.table[nextHashS] = entry
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = entry, eLong.Cur
nextHashS = hashLen(next, tableBits, hashShortBytes)
nextHashL = hash7(next, tableBits)
t = lCandidate.Cur.offset - e.cur
if s-t < maxMatchOffset {
if uint32(cv) == load3232(src, lCandidate.Cur.offset-e.cur) {
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
t2 := lCandidate.Prev.offset - e.cur
if s-t2 < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
l = e.matchlen(s+4, t+4, src) + 4
ml1 := e.matchlen(s+4, t2+4, src) + 4
if ml1 > l {
t = t2
l = ml1
break
}
}
break
}
t = lCandidate.Prev.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
break
}
}
t = sCandidate.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, sCandidate.offset-e.cur) {
// Found a 4 match...
l = e.matchlen(s+4, t+4, src) + 4
lCandidate = e.bTable[nextHashL]
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
// If the next long is a candidate, use that...
t2 := lCandidate.Cur.offset - e.cur
if nextS-t2 < maxMatchOffset {
if load3232(src, lCandidate.Cur.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
s = nextS
l = ml
break
}
}
// If the previous long is a candidate, use that...
t2 = lCandidate.Prev.offset - e.cur
if nextS-t2 < maxMatchOffset && load3232(src, lCandidate.Prev.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
s = nextS
l = ml
break
}
}
}
break
}
cv = next
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
if l == 0 {
// Extend the 4-byte match as long as possible.
l = e.matchlenLong(s+4, t+4, src) + 4
} else if l == maxMatchLength {
l += e.matchlenLong(s+l, t+l, src)
}
// Try to locate a better match by checking the end of best match...
if sAt := s + l; l < 30 && sAt < sLimit {
// Allow some bytes at the beginning to mismatch.
// Sweet spot is 2/3 bytes depending on input.
// 3 is only a little better when it is but sometimes a lot worse.
// The skipped bytes are tested in Extend backwards,
// and still picked up as part of the match if they do.
const skipBeginning = 2
eLong := e.bTable[hash7(load6432(src, sAt), tableBits)].Cur.offset
t2 := eLong - e.cur - l + skipBeginning
s2 := s + skipBeginning
off := s2 - t2
if t2 >= 0 && off < maxMatchOffset && off > 0 {
if l2 := e.matchlenLong(s2, t2, src); l2 > l {
t = t2
l = l2
s = s2
}
}
}
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
if debugDeflate {
if t >= s {
panic(fmt.Sprintln("s-t", s, t))
}
if (s - t) > maxMatchOffset {
panic(fmt.Sprintln("mmo", s-t))
}
if l < baseMatchLength {
panic("bml")
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
goto emitRemainder
}
// Store every 3rd hash in-between.
if true {
const hashEvery = 3
i := s - l + 1
if i < s-1 {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
e.table[hashLen(cv, tableBits, hashShortBytes)] = t
eLong := &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
// Do an long at i+1
cv >>= 8
t = tableEntry{offset: t.offset + 1}
eLong = &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
// We only have enough bits for a short entry at i+2
cv >>= 8
t = tableEntry{offset: t.offset + 1}
e.table[hashLen(cv, tableBits, hashShortBytes)] = t
// Skip one - otherwise we risk hitting 's'
i += 4
for ; i < s-1; i += hashEvery {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
t2 := tableEntry{offset: t.offset + 1}
eLong := &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
e.table[hashLen(cv>>8, tableBits, hashShortBytes)] = t2
}
}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s.
x := load6432(src, s-1)
o := e.cur + s - 1
prevHashS := hashLen(x, tableBits, hashShortBytes)
prevHashL := hash7(x, tableBits)
e.table[prevHashS] = tableEntry{offset: o}
eLong := &e.bTable[prevHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: o}, eLong.Cur
cv = x >> 8
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}
// fastEncL5Window is a level 5 encoder,
// but with a custom window size.
type fastEncL5Window struct {
hist []byte
cur int32
maxOffset int32
table [tableSize]tableEntry
bTable [tableSize]tableEntryPrev
}
func (e *fastEncL5Window) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
hashShortBytes = 4
)
maxMatchOffset := e.maxOffset
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
for i := range e.bTable[:] {
e.bTable[i] = tableEntryPrev{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
for i := range e.bTable[:] {
v := e.bTable[i]
if v.Cur.offset <= minOff {
v.Cur.offset = 0
v.Prev.offset = 0
} else {
v.Cur.offset = v.Cur.offset - e.cur + maxMatchOffset
if v.Prev.offset <= minOff {
v.Prev.offset = 0
} else {
v.Prev.offset = v.Prev.offset - e.cur + maxMatchOffset
}
}
e.bTable[i] = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load6432(src, s)
for {
const skipLog = 6
const doEvery = 1
nextS := s
var l int32
var t int32
for {
nextHashS := hashLen(cv, tableBits, hashShortBytes)
nextHashL := hash7(cv, tableBits)
s = nextS
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
// Fetch a short+long candidate
sCandidate := e.table[nextHashS]
lCandidate := e.bTable[nextHashL]
next := load6432(src, nextS)
entry := tableEntry{offset: s + e.cur}
e.table[nextHashS] = entry
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = entry, eLong.Cur
nextHashS = hashLen(next, tableBits, hashShortBytes)
nextHashL = hash7(next, tableBits)
t = lCandidate.Cur.offset - e.cur
if s-t < maxMatchOffset {
if uint32(cv) == load3232(src, lCandidate.Cur.offset-e.cur) {
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
t2 := lCandidate.Prev.offset - e.cur
if s-t2 < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
l = e.matchlen(s+4, t+4, src) + 4
ml1 := e.matchlen(s+4, t2+4, src) + 4
if ml1 > l {
t = t2
l = ml1
break
}
}
break
}
t = lCandidate.Prev.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
break
}
}
t = sCandidate.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, sCandidate.offset-e.cur) {
// Found a 4 match...
l = e.matchlen(s+4, t+4, src) + 4
lCandidate = e.bTable[nextHashL]
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
// If the next long is a candidate, use that...
t2 := lCandidate.Cur.offset - e.cur
if nextS-t2 < maxMatchOffset {
if load3232(src, lCandidate.Cur.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
s = nextS
l = ml
break
}
}
// If the previous long is a candidate, use that...
t2 = lCandidate.Prev.offset - e.cur
if nextS-t2 < maxMatchOffset && load3232(src, lCandidate.Prev.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
s = nextS
l = ml
break
}
}
}
break
}
cv = next
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
if l == 0 {
// Extend the 4-byte match as long as possible.
l = e.matchlenLong(s+4, t+4, src) + 4
} else if l == maxMatchLength {
l += e.matchlenLong(s+l, t+l, src)
}
// Try to locate a better match by checking the end of best match...
if sAt := s + l; l < 30 && sAt < sLimit {
// Allow some bytes at the beginning to mismatch.
// Sweet spot is 2/3 bytes depending on input.
// 3 is only a little better when it is but sometimes a lot worse.
// The skipped bytes are tested in Extend backwards,
// and still picked up as part of the match if they do.
const skipBeginning = 2
eLong := e.bTable[hash7(load6432(src, sAt), tableBits)].Cur.offset
t2 := eLong - e.cur - l + skipBeginning
s2 := s + skipBeginning
off := s2 - t2
if t2 >= 0 && off < maxMatchOffset && off > 0 {
if l2 := e.matchlenLong(s2, t2, src); l2 > l {
t = t2
l = l2
s = s2
}
}
}
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
if debugDeflate {
if t >= s {
panic(fmt.Sprintln("s-t", s, t))
}
if (s - t) > maxMatchOffset {
panic(fmt.Sprintln("mmo", s-t))
}
if l < baseMatchLength {
panic("bml")
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
goto emitRemainder
}
// Store every 3rd hash in-between.
if true {
const hashEvery = 3
i := s - l + 1
if i < s-1 {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
e.table[hashLen(cv, tableBits, hashShortBytes)] = t
eLong := &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
// Do an long at i+1
cv >>= 8
t = tableEntry{offset: t.offset + 1}
eLong = &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
// We only have enough bits for a short entry at i+2
cv >>= 8
t = tableEntry{offset: t.offset + 1}
e.table[hashLen(cv, tableBits, hashShortBytes)] = t
// Skip one - otherwise we risk hitting 's'
i += 4
for ; i < s-1; i += hashEvery {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
t2 := tableEntry{offset: t.offset + 1}
eLong := &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = t, eLong.Cur
e.table[hashLen(cv>>8, tableBits, hashShortBytes)] = t2
}
}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s.
x := load6432(src, s-1)
o := e.cur + s - 1
prevHashS := hashLen(x, tableBits, hashShortBytes)
prevHashL := hash7(x, tableBits)
e.table[prevHashS] = tableEntry{offset: o}
eLong := &e.bTable[prevHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: o}, eLong.Cur
cv = x >> 8
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}
// Reset the encoding table.
func (e *fastEncL5Window) Reset() {
// We keep the same allocs, since we are compressing the same block sizes.
if cap(e.hist) < allocHistory {
e.hist = make([]byte, 0, allocHistory)
}
// We offset current position so everything will be out of reach.
// If we are above the buffer reset it will be cleared anyway since len(hist) == 0.
if e.cur <= int32(bufferReset) {
e.cur += e.maxOffset + int32(len(e.hist))
}
e.hist = e.hist[:0]
}
func (e *fastEncL5Window) addBlock(src []byte) int32 {
// check if we have space already
maxMatchOffset := e.maxOffset
if len(e.hist)+len(src) > cap(e.hist) {
if cap(e.hist) == 0 {
e.hist = make([]byte, 0, allocHistory)
} else {
if cap(e.hist) < int(maxMatchOffset*2) {
panic("unexpected buffer size")
}
// Move down
offset := int32(len(e.hist)) - maxMatchOffset
copy(e.hist[0:maxMatchOffset], e.hist[offset:])
e.cur += offset
e.hist = e.hist[:maxMatchOffset]
}
}
s := int32(len(e.hist))
e.hist = append(e.hist, src...)
return s
}
// matchlen will return the match length between offsets and t in src.
// The maximum length returned is maxMatchLength - 4.
// It is assumed that s > t, that t >=0 and s < len(src).
func (e *fastEncL5Window) matchlen(s, t int32, src []byte) int32 {
if debugDecode {
if t >= s {
panic(fmt.Sprint("t >=s:", t, s))
}
if int(s) >= len(src) {
panic(fmt.Sprint("s >= len(src):", s, len(src)))
}
if t < 0 {
panic(fmt.Sprint("t < 0:", t))
}
if s-t > e.maxOffset {
panic(fmt.Sprint(s, "-", t, "(", s-t, ") > maxMatchLength (", maxMatchOffset, ")"))
}
}
s1 := int(s) + maxMatchLength - 4
if s1 > len(src) {
s1 = len(src)
}
// Extend the match to be as long as possible.
return int32(matchLen(src[s:s1], src[t:]))
}
// matchlenLong will return the match length between offsets and t in src.
// It is assumed that s > t, that t >=0 and s < len(src).
func (e *fastEncL5Window) matchlenLong(s, t int32, src []byte) int32 {
if debugDeflate {
if t >= s {
panic(fmt.Sprint("t >=s:", t, s))
}
if int(s) >= len(src) {
panic(fmt.Sprint("s >= len(src):", s, len(src)))
}
if t < 0 {
panic(fmt.Sprint("t < 0:", t))
}
if s-t > e.maxOffset {
panic(fmt.Sprint(s, "-", t, "(", s-t, ") > maxMatchLength (", maxMatchOffset, ")"))
}
}
// Extend the match to be as long as possible.
return int32(matchLen(src[s:], src[t:]))
}

View File

@ -0,0 +1,325 @@
package flate
import "fmt"
type fastEncL6 struct {
fastGen
table [tableSize]tableEntry
bTable [tableSize]tableEntryPrev
}
func (e *fastEncL6) Encode(dst *tokens, src []byte) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
hashShortBytes = 4
)
if debugDeflate && e.cur < 0 {
panic(fmt.Sprint("e.cur < 0: ", e.cur))
}
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = tableEntry{}
}
for i := range e.bTable[:] {
e.bTable[i] = tableEntryPrev{}
}
e.cur = maxMatchOffset
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - maxMatchOffset
for i := range e.table[:] {
v := e.table[i].offset
if v <= minOff {
v = 0
} else {
v = v - e.cur + maxMatchOffset
}
e.table[i].offset = v
}
for i := range e.bTable[:] {
v := e.bTable[i]
if v.Cur.offset <= minOff {
v.Cur.offset = 0
v.Prev.offset = 0
} else {
v.Cur.offset = v.Cur.offset - e.cur + maxMatchOffset
if v.Prev.offset <= minOff {
v.Prev.offset = 0
} else {
v.Prev.offset = v.Prev.offset - e.cur + maxMatchOffset
}
}
e.bTable[i] = v
}
e.cur = maxMatchOffset
}
s := e.addBlock(src)
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = uint16(len(src))
return
}
// Override src
src = e.hist
nextEmit := s
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load6432(src, s)
// Repeat MUST be > 1 and within range
repeat := int32(1)
for {
const skipLog = 7
const doEvery = 1
nextS := s
var l int32
var t int32
for {
nextHashS := hashLen(cv, tableBits, hashShortBytes)
nextHashL := hash7(cv, tableBits)
s = nextS
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit {
goto emitRemainder
}
// Fetch a short+long candidate
sCandidate := e.table[nextHashS]
lCandidate := e.bTable[nextHashL]
next := load6432(src, nextS)
entry := tableEntry{offset: s + e.cur}
e.table[nextHashS] = entry
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = entry, eLong.Cur
// Calculate hashes of 'next'
nextHashS = hashLen(next, tableBits, hashShortBytes)
nextHashL = hash7(next, tableBits)
t = lCandidate.Cur.offset - e.cur
if s-t < maxMatchOffset {
if uint32(cv) == load3232(src, lCandidate.Cur.offset-e.cur) {
// Long candidate matches at least 4 bytes.
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
// Check the previous long candidate as well.
t2 := lCandidate.Prev.offset - e.cur
if s-t2 < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
l = e.matchlen(s+4, t+4, src) + 4
ml1 := e.matchlen(s+4, t2+4, src) + 4
if ml1 > l {
t = t2
l = ml1
break
}
}
break
}
// Current value did not match, but check if previous long value does.
t = lCandidate.Prev.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, lCandidate.Prev.offset-e.cur) {
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
break
}
}
t = sCandidate.offset - e.cur
if s-t < maxMatchOffset && uint32(cv) == load3232(src, sCandidate.offset-e.cur) {
// Found a 4 match...
l = e.matchlen(s+4, t+4, src) + 4
// Look up next long candidate (at nextS)
lCandidate = e.bTable[nextHashL]
// Store the next match
e.table[nextHashS] = tableEntry{offset: nextS + e.cur}
eLong := &e.bTable[nextHashL]
eLong.Cur, eLong.Prev = tableEntry{offset: nextS + e.cur}, eLong.Cur
// Check repeat at s + repOff
const repOff = 1
t2 := s - repeat + repOff
if load3232(src, t2) == uint32(cv>>(8*repOff)) {
ml := e.matchlen(s+4+repOff, t2+4, src) + 4
if ml > l {
t = t2
l = ml
s += repOff
// Not worth checking more.
break
}
}
// If the next long is a candidate, use that...
t2 = lCandidate.Cur.offset - e.cur
if nextS-t2 < maxMatchOffset {
if load3232(src, lCandidate.Cur.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
s = nextS
l = ml
// This is ok, but check previous as well.
}
}
// If the previous long is a candidate, use that...
t2 = lCandidate.Prev.offset - e.cur
if nextS-t2 < maxMatchOffset && load3232(src, lCandidate.Prev.offset-e.cur) == uint32(next) {
ml := e.matchlen(nextS+4, t2+4, src) + 4
if ml > l {
t = t2
s = nextS
l = ml
break
}
}
}
break
}
cv = next
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
// Extend the 4-byte match as long as possible.
if l == 0 {
l = e.matchlenLong(s+4, t+4, src) + 4
} else if l == maxMatchLength {
l += e.matchlenLong(s+l, t+l, src)
}
// Try to locate a better match by checking the end-of-match...
if sAt := s + l; sAt < sLimit {
// Allow some bytes at the beginning to mismatch.
// Sweet spot is 2/3 bytes depending on input.
// 3 is only a little better when it is but sometimes a lot worse.
// The skipped bytes are tested in Extend backwards,
// and still picked up as part of the match if they do.
const skipBeginning = 2
eLong := &e.bTable[hash7(load6432(src, sAt), tableBits)]
// Test current
t2 := eLong.Cur.offset - e.cur - l + skipBeginning
s2 := s + skipBeginning
off := s2 - t2
if off < maxMatchOffset {
if off > 0 && t2 >= 0 {
if l2 := e.matchlenLong(s2, t2, src); l2 > l {
t = t2
l = l2
s = s2
}
}
// Test next:
t2 = eLong.Prev.offset - e.cur - l + skipBeginning
off := s2 - t2
if off > 0 && off < maxMatchOffset && t2 >= 0 {
if l2 := e.matchlenLong(s2, t2, src); l2 > l {
t = t2
l = l2
s = s2
}
}
}
}
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
if false {
if t >= s {
panic(fmt.Sprintln("s-t", s, t))
}
if (s - t) > maxMatchOffset {
panic(fmt.Sprintln("mmo", s-t))
}
if l < baseMatchLength {
panic("bml")
}
}
dst.AddMatchLong(l, uint32(s-t-baseMatchOffset))
repeat = s - t
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
// Index after match end.
for i := nextS + 1; i < int32(len(src))-8; i += 2 {
cv := load6432(src, i)
e.table[hashLen(cv, tableBits, hashShortBytes)] = tableEntry{offset: i + e.cur}
eLong := &e.bTable[hash7(cv, tableBits)]
eLong.Cur, eLong.Prev = tableEntry{offset: i + e.cur}, eLong.Cur
}
goto emitRemainder
}
// Store every long hash in-between and every second short.
if true {
for i := nextS + 1; i < s-1; i += 2 {
cv := load6432(src, i)
t := tableEntry{offset: i + e.cur}
t2 := tableEntry{offset: t.offset + 1}
eLong := &e.bTable[hash7(cv, tableBits)]
eLong2 := &e.bTable[hash7(cv>>8, tableBits)]
e.table[hashLen(cv, tableBits, hashShortBytes)] = t
eLong.Cur, eLong.Prev = t, eLong.Cur
eLong2.Cur, eLong2.Prev = t2, eLong2.Cur
}
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s.
cv = load6432(src, s)
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

View File

@ -0,0 +1,16 @@
//go:build amd64 && !appengine && !noasm && gc
// +build amd64,!appengine,!noasm,gc
// Copyright 2019+ Klaus Post. All rights reserved.
// License information can be found in the LICENSE file.
package flate
// matchLen returns how many bytes match in a and b
//
// It assumes that:
//
// len(a) <= len(b) and len(a) > 0
//
//go:noescape
func matchLen(a []byte, b []byte) int

View File

@ -0,0 +1,68 @@
// Copied from S2 implementation.
//go:build !appengine && !noasm && gc && !noasm
#include "textflag.h"
// func matchLen(a []byte, b []byte) int
// Requires: BMI
TEXT ·matchLen(SB), NOSPLIT, $0-56
MOVQ a_base+0(FP), AX
MOVQ b_base+24(FP), CX
MOVQ a_len+8(FP), DX
// matchLen
XORL SI, SI
CMPL DX, $0x08
JB matchlen_match4_standalone
matchlen_loopback_standalone:
MOVQ (AX)(SI*1), BX
XORQ (CX)(SI*1), BX
TESTQ BX, BX
JZ matchlen_loop_standalone
#ifdef GOAMD64_v3
TZCNTQ BX, BX
#else
BSFQ BX, BX
#endif
SARQ $0x03, BX
LEAL (SI)(BX*1), SI
JMP gen_match_len_end
matchlen_loop_standalone:
LEAL -8(DX), DX
LEAL 8(SI), SI
CMPL DX, $0x08
JAE matchlen_loopback_standalone
matchlen_match4_standalone:
CMPL DX, $0x04
JB matchlen_match2_standalone
MOVL (AX)(SI*1), BX
CMPL (CX)(SI*1), BX
JNE matchlen_match2_standalone
LEAL -4(DX), DX
LEAL 4(SI), SI
matchlen_match2_standalone:
CMPL DX, $0x02
JB matchlen_match1_standalone
MOVW (AX)(SI*1), BX
CMPW (CX)(SI*1), BX
JNE matchlen_match1_standalone
LEAL -2(DX), DX
LEAL 2(SI), SI
matchlen_match1_standalone:
CMPL DX, $0x01
JB gen_match_len_end
MOVB (AX)(SI*1), BL
CMPB (CX)(SI*1), BL
JNE gen_match_len_end
INCL SI
gen_match_len_end:
MOVQ SI, ret+48(FP)
RET

View File

@ -0,0 +1,33 @@
//go:build !amd64 || appengine || !gc || noasm
// +build !amd64 appengine !gc noasm
// Copyright 2019+ Klaus Post. All rights reserved.
// License information can be found in the LICENSE file.
package flate
import (
"encoding/binary"
"math/bits"
)
// matchLen returns the maximum common prefix length of a and b.
// a must be the shortest of the two.
func matchLen(a, b []byte) (n int) {
for ; len(a) >= 8 && len(b) >= 8; a, b = a[8:], b[8:] {
diff := binary.LittleEndian.Uint64(a) ^ binary.LittleEndian.Uint64(b)
if diff != 0 {
return n + bits.TrailingZeros64(diff)>>3
}
n += 8
}
for i := range a {
if a[i] != b[i] {
break
}
n++
}
return n
}

View File

@ -0,0 +1,37 @@
package flate
const (
// Masks for shifts with register sizes of the shift value.
// This can be used to work around the x86 design of shifting by mod register size.
// It can be used when a variable shift is always smaller than the register size.
// reg8SizeMaskX - shift value is 8 bits, shifted is X
reg8SizeMask8 = 7
reg8SizeMask16 = 15
reg8SizeMask32 = 31
reg8SizeMask64 = 63
// reg16SizeMaskX - shift value is 16 bits, shifted is X
reg16SizeMask8 = reg8SizeMask8
reg16SizeMask16 = reg8SizeMask16
reg16SizeMask32 = reg8SizeMask32
reg16SizeMask64 = reg8SizeMask64
// reg32SizeMaskX - shift value is 32 bits, shifted is X
reg32SizeMask8 = reg8SizeMask8
reg32SizeMask16 = reg8SizeMask16
reg32SizeMask32 = reg8SizeMask32
reg32SizeMask64 = reg8SizeMask64
// reg64SizeMaskX - shift value is 64 bits, shifted is X
reg64SizeMask8 = reg8SizeMask8
reg64SizeMask16 = reg8SizeMask16
reg64SizeMask32 = reg8SizeMask32
reg64SizeMask64 = reg8SizeMask64
// regSizeMaskUintX - shift value is uint, shifted is X
regSizeMaskUint8 = reg8SizeMask8
regSizeMaskUint16 = reg8SizeMask16
regSizeMaskUint32 = reg8SizeMask32
regSizeMaskUint64 = reg8SizeMask64
)

View File

@ -0,0 +1,40 @@
//go:build !amd64
// +build !amd64
package flate
const (
// Masks for shifts with register sizes of the shift value.
// This can be used to work around the x86 design of shifting by mod register size.
// It can be used when a variable shift is always smaller than the register size.
// reg8SizeMaskX - shift value is 8 bits, shifted is X
reg8SizeMask8 = 0xff
reg8SizeMask16 = 0xff
reg8SizeMask32 = 0xff
reg8SizeMask64 = 0xff
// reg16SizeMaskX - shift value is 16 bits, shifted is X
reg16SizeMask8 = 0xffff
reg16SizeMask16 = 0xffff
reg16SizeMask32 = 0xffff
reg16SizeMask64 = 0xffff
// reg32SizeMaskX - shift value is 32 bits, shifted is X
reg32SizeMask8 = 0xffffffff
reg32SizeMask16 = 0xffffffff
reg32SizeMask32 = 0xffffffff
reg32SizeMask64 = 0xffffffff
// reg64SizeMaskX - shift value is 64 bits, shifted is X
reg64SizeMask8 = 0xffffffffffffffff
reg64SizeMask16 = 0xffffffffffffffff
reg64SizeMask32 = 0xffffffffffffffff
reg64SizeMask64 = 0xffffffffffffffff
// regSizeMaskUintX - shift value is uint, shifted is X
regSizeMaskUint8 = ^uint(0)
regSizeMaskUint16 = ^uint(0)
regSizeMaskUint32 = ^uint(0)
regSizeMaskUint64 = ^uint(0)
)

View File

@ -0,0 +1,318 @@
package flate
import (
"io"
"math"
"sync"
)
const (
maxStatelessBlock = math.MaxInt16
// dictionary will be taken from maxStatelessBlock, so limit it.
maxStatelessDict = 8 << 10
slTableBits = 13
slTableSize = 1 << slTableBits
slTableShift = 32 - slTableBits
)
type statelessWriter struct {
dst io.Writer
closed bool
}
func (s *statelessWriter) Close() error {
if s.closed {
return nil
}
s.closed = true
// Emit EOF block
return StatelessDeflate(s.dst, nil, true, nil)
}
func (s *statelessWriter) Write(p []byte) (n int, err error) {
err = StatelessDeflate(s.dst, p, false, nil)
if err != nil {
return 0, err
}
return len(p), nil
}
func (s *statelessWriter) Reset(w io.Writer) {
s.dst = w
s.closed = false
}
// NewStatelessWriter will do compression but without maintaining any state
// between Write calls.
// There will be no memory kept between Write calls,
// but compression and speed will be suboptimal.
// Because of this, the size of actual Write calls will affect output size.
func NewStatelessWriter(dst io.Writer) io.WriteCloser {
return &statelessWriter{dst: dst}
}
// bitWriterPool contains bit writers that can be reused.
var bitWriterPool = sync.Pool{
New: func() interface{} {
return newHuffmanBitWriter(nil)
},
}
// StatelessDeflate allows compressing directly to a Writer without retaining state.
// When returning everything will be flushed.
// Up to 8KB of an optional dictionary can be given which is presumed to precede the block.
// Longer dictionaries will be truncated and will still produce valid output.
// Sending nil dictionary is perfectly fine.
func StatelessDeflate(out io.Writer, in []byte, eof bool, dict []byte) error {
var dst tokens
bw := bitWriterPool.Get().(*huffmanBitWriter)
bw.reset(out)
defer func() {
// don't keep a reference to our output
bw.reset(nil)
bitWriterPool.Put(bw)
}()
if eof && len(in) == 0 {
// Just write an EOF block.
// Could be faster...
bw.writeStoredHeader(0, true)
bw.flush()
return bw.err
}
// Truncate dict
if len(dict) > maxStatelessDict {
dict = dict[len(dict)-maxStatelessDict:]
}
// For subsequent loops, keep shallow dict reference to avoid alloc+copy.
var inDict []byte
for len(in) > 0 {
todo := in
if len(inDict) > 0 {
if len(todo) > maxStatelessBlock-maxStatelessDict {
todo = todo[:maxStatelessBlock-maxStatelessDict]
}
} else if len(todo) > maxStatelessBlock-len(dict) {
todo = todo[:maxStatelessBlock-len(dict)]
}
inOrg := in
in = in[len(todo):]
uncompressed := todo
if len(dict) > 0 {
// combine dict and source
bufLen := len(todo) + len(dict)
combined := make([]byte, bufLen)
copy(combined, dict)
copy(combined[len(dict):], todo)
todo = combined
}
// Compress
if len(inDict) == 0 {
statelessEnc(&dst, todo, int16(len(dict)))
} else {
statelessEnc(&dst, inDict[:maxStatelessDict+len(todo)], maxStatelessDict)
}
isEof := eof && len(in) == 0
if dst.n == 0 {
bw.writeStoredHeader(len(uncompressed), isEof)
if bw.err != nil {
return bw.err
}
bw.writeBytes(uncompressed)
} else if int(dst.n) > len(uncompressed)-len(uncompressed)>>4 {
// If we removed less than 1/16th, huffman compress the block.
bw.writeBlockHuff(isEof, uncompressed, len(in) == 0)
} else {
bw.writeBlockDynamic(&dst, isEof, uncompressed, len(in) == 0)
}
if len(in) > 0 {
// Retain a dict if we have more
inDict = inOrg[len(uncompressed)-maxStatelessDict:]
dict = nil
dst.Reset()
}
if bw.err != nil {
return bw.err
}
}
if !eof {
// Align, only a stored block can do that.
bw.writeStoredHeader(0, false)
}
bw.flush()
return bw.err
}
func hashSL(u uint32) uint32 {
return (u * 0x1e35a7bd) >> slTableShift
}
func load3216(b []byte, i int16) uint32 {
// Help the compiler eliminate bounds checks on the read so it can be done in a single read.
b = b[i:]
b = b[:4]
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load6416(b []byte, i int16) uint64 {
// Help the compiler eliminate bounds checks on the read so it can be done in a single read.
b = b[i:]
b = b[:8]
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
func statelessEnc(dst *tokens, src []byte, startAt int16) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
type tableEntry struct {
offset int16
}
var table [slTableSize]tableEntry
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src)-int(startAt) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = 0
return
}
// Index until startAt
if startAt > 0 {
cv := load3232(src, 0)
for i := int16(0); i < startAt; i++ {
table[hashSL(cv)] = tableEntry{offset: i}
cv = (cv >> 8) | (uint32(src[i+4]) << 24)
}
}
s := startAt + 1
nextEmit := startAt
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int16(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load3216(src, s)
for {
const skipLog = 5
const doEvery = 2
nextS := s
var candidate tableEntry
for {
nextHash := hashSL(cv)
candidate = table[nextHash]
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit || nextS <= 0 {
goto emitRemainder
}
now := load6416(src, nextS)
table[nextHash] = tableEntry{offset: s}
nextHash = hashSL(uint32(now))
if cv == load3216(src, candidate.offset) {
table[nextHash] = tableEntry{offset: nextS}
break
}
// Do one right away...
cv = uint32(now)
s = nextS
nextS++
candidate = table[nextHash]
now >>= 8
table[nextHash] = tableEntry{offset: s}
if cv == load3216(src, candidate.offset) {
table[nextHash] = tableEntry{offset: nextS}
break
}
cv = uint32(now)
s = nextS
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
t := candidate.offset
l := int16(matchLen(src[s+4:], src[t+4:]) + 4)
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
if false {
emitLiteral(dst, src[nextEmit:s])
} else {
for _, v := range src[nextEmit:s] {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
}
// Save the match found
dst.AddMatchLong(int32(l), uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load6416(src, s-2)
o := s - 2
prevHash := hashSL(uint32(x))
table[prevHash] = tableEntry{offset: o}
x >>= 16
currHash := hashSL(uint32(x))
candidate = table[currHash]
table[currHash] = tableEntry{offset: o + 2}
if uint32(x) != load3216(src, candidate.offset) {
cv = uint32(x >> 8)
s++
break
}
}
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}

View File

@ -0,0 +1,379 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"math"
)
const (
// bits 0-16 xoffset = offset - MIN_OFFSET_SIZE, or literal - 16 bits
// bits 16-22 offsetcode - 5 bits
// bits 22-30 xlength = length - MIN_MATCH_LENGTH - 8 bits
// bits 30-32 type 0 = literal 1=EOF 2=Match 3=Unused - 2 bits
lengthShift = 22
offsetMask = 1<<lengthShift - 1
typeMask = 3 << 30
literalType = 0 << 30
matchType = 1 << 30
matchOffsetOnlyMask = 0xffff
)
// The length code for length X (MIN_MATCH_LENGTH <= X <= MAX_MATCH_LENGTH)
// is lengthCodes[length - MIN_MATCH_LENGTH]
var lengthCodes = [256]uint8{
0, 1, 2, 3, 4, 5, 6, 7, 8, 8,
9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
13, 13, 13, 13, 14, 14, 14, 14, 15, 15,
15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
17, 17, 17, 17, 17, 17, 17, 17, 18, 18,
18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
19, 19, 19, 19, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 28,
}
// lengthCodes1 is length codes, but starting at 1.
var lengthCodes1 = [256]uint8{
1, 2, 3, 4, 5, 6, 7, 8, 9, 9,
10, 10, 11, 11, 12, 12, 13, 13, 13, 13,
14, 14, 14, 14, 15, 15, 15, 15, 16, 16,
16, 16, 17, 17, 17, 17, 17, 17, 17, 17,
18, 18, 18, 18, 18, 18, 18, 18, 19, 19,
19, 19, 19, 19, 19, 19, 20, 20, 20, 20,
20, 20, 20, 20, 21, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 29,
}
var offsetCodes = [256]uint32{
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
}
// offsetCodes14 are offsetCodes, but with 14 added.
var offsetCodes14 = [256]uint32{
14, 15, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
}
type token uint32
type tokens struct {
extraHist [32]uint16 // codes 256->maxnumlit
offHist [32]uint16 // offset codes
litHist [256]uint16 // codes 0->255
nFilled int
n uint16 // Must be able to contain maxStoreBlockSize
tokens [maxStoreBlockSize + 1]token
}
func (t *tokens) Reset() {
if t.n == 0 {
return
}
t.n = 0
t.nFilled = 0
for i := range t.litHist[:] {
t.litHist[i] = 0
}
for i := range t.extraHist[:] {
t.extraHist[i] = 0
}
for i := range t.offHist[:] {
t.offHist[i] = 0
}
}
func (t *tokens) Fill() {
if t.n == 0 {
return
}
for i, v := range t.litHist[:] {
if v == 0 {
t.litHist[i] = 1
t.nFilled++
}
}
for i, v := range t.extraHist[:literalCount-256] {
if v == 0 {
t.nFilled++
t.extraHist[i] = 1
}
}
for i, v := range t.offHist[:offsetCodeCount] {
if v == 0 {
t.offHist[i] = 1
}
}
}
func indexTokens(in []token) tokens {
var t tokens
t.indexTokens(in)
return t
}
func (t *tokens) indexTokens(in []token) {
t.Reset()
for _, tok := range in {
if tok < matchType {
t.AddLiteral(tok.literal())
continue
}
t.AddMatch(uint32(tok.length()), tok.offset()&matchOffsetOnlyMask)
}
}
// emitLiteral writes a literal chunk and returns the number of bytes written.
func emitLiteral(dst *tokens, lit []byte) {
for _, v := range lit {
dst.tokens[dst.n] = token(v)
dst.litHist[v]++
dst.n++
}
}
func (t *tokens) AddLiteral(lit byte) {
t.tokens[t.n] = token(lit)
t.litHist[lit]++
t.n++
}
// from https://stackoverflow.com/a/28730362
func mFastLog2(val float32) float32 {
ux := int32(math.Float32bits(val))
log2 := (float32)(((ux >> 23) & 255) - 128)
ux &= -0x7f800001
ux += 127 << 23
uval := math.Float32frombits(uint32(ux))
log2 += ((-0.34484843)*uval+2.02466578)*uval - 0.67487759
return log2
}
// EstimatedBits will return an minimum size estimated by an *optimal*
// compression of the block.
// The size of the block
func (t *tokens) EstimatedBits() int {
shannon := float32(0)
bits := int(0)
nMatches := 0
total := int(t.n) + t.nFilled
if total > 0 {
invTotal := 1.0 / float32(total)
for _, v := range t.litHist[:] {
if v > 0 {
n := float32(v)
shannon += atLeastOne(-mFastLog2(n*invTotal)) * n
}
}
// Just add 15 for EOB
shannon += 15
for i, v := range t.extraHist[1 : literalCount-256] {
if v > 0 {
n := float32(v)
shannon += atLeastOne(-mFastLog2(n*invTotal)) * n
bits += int(lengthExtraBits[i&31]) * int(v)
nMatches += int(v)
}
}
}
if nMatches > 0 {
invTotal := 1.0 / float32(nMatches)
for i, v := range t.offHist[:offsetCodeCount] {
if v > 0 {
n := float32(v)
shannon += atLeastOne(-mFastLog2(n*invTotal)) * n
bits += int(offsetExtraBits[i&31]) * int(v)
}
}
}
return int(shannon) + bits
}
// AddMatch adds a match to the tokens.
// This function is very sensitive to inlining and right on the border.
func (t *tokens) AddMatch(xlength uint32, xoffset uint32) {
if debugDeflate {
if xlength >= maxMatchLength+baseMatchLength {
panic(fmt.Errorf("invalid length: %v", xlength))
}
if xoffset >= maxMatchOffset+baseMatchOffset {
panic(fmt.Errorf("invalid offset: %v", xoffset))
}
}
oCode := offsetCode(xoffset)
xoffset |= oCode << 16
t.extraHist[lengthCodes1[uint8(xlength)]]++
t.offHist[oCode&31]++
t.tokens[t.n] = token(matchType | xlength<<lengthShift | xoffset)
t.n++
}
// AddMatchLong adds a match to the tokens, potentially longer than max match length.
// Length should NOT have the base subtracted, only offset should.
func (t *tokens) AddMatchLong(xlength int32, xoffset uint32) {
if debugDeflate {
if xoffset >= maxMatchOffset+baseMatchOffset {
panic(fmt.Errorf("invalid offset: %v", xoffset))
}
}
oc := offsetCode(xoffset)
xoffset |= oc << 16
for xlength > 0 {
xl := xlength
if xl > 258 {
// We need to have at least baseMatchLength left over for next loop.
if xl > 258+baseMatchLength {
xl = 258
} else {
xl = 258 - baseMatchLength
}
}
xlength -= xl
xl -= baseMatchLength
t.extraHist[lengthCodes1[uint8(xl)]]++
t.offHist[oc&31]++
t.tokens[t.n] = token(matchType | uint32(xl)<<lengthShift | xoffset)
t.n++
}
}
func (t *tokens) AddEOB() {
t.tokens[t.n] = token(endBlockMarker)
t.extraHist[0]++
t.n++
}
func (t *tokens) Slice() []token {
return t.tokens[:t.n]
}
// VarInt returns the tokens as varint encoded bytes.
func (t *tokens) VarInt() []byte {
var b = make([]byte, binary.MaxVarintLen32*int(t.n))
var off int
for _, v := range t.tokens[:t.n] {
off += binary.PutUvarint(b[off:], uint64(v))
}
return b[:off]
}
// FromVarInt restores t to the varint encoded tokens provided.
// Any data in t is removed.
func (t *tokens) FromVarInt(b []byte) error {
var buf = bytes.NewReader(b)
var toks []token
for {
r, err := binary.ReadUvarint(buf)
if err == io.EOF {
break
}
if err != nil {
return err
}
toks = append(toks, token(r))
}
t.indexTokens(toks)
return nil
}
// Returns the type of a token
func (t token) typ() uint32 { return uint32(t) & typeMask }
// Returns the literal of a literal token
func (t token) literal() uint8 { return uint8(t) }
// Returns the extra offset of a match token
func (t token) offset() uint32 { return uint32(t) & offsetMask }
func (t token) length() uint8 { return uint8(t >> lengthShift) }
// Convert length to code.
func lengthCode(len uint8) uint8 { return lengthCodes[len] }
// Returns the offset code corresponding to a specific offset
func offsetCode(off uint32) uint32 {
if false {
if off < uint32(len(offsetCodes)) {
return offsetCodes[off&255]
} else if off>>7 < uint32(len(offsetCodes)) {
return offsetCodes[(off>>7)&255] + 14
} else {
return offsetCodes[(off>>14)&255] + 28
}
}
if off < uint32(len(offsetCodes)) {
return offsetCodes[uint8(off)]
}
return offsetCodes14[uint8(off>>7)]
}