Signed-off-by: Alex Ellis (OpenFaaS Ltd) <alexellis2@gmail.com>
This commit is contained in:
Alex Ellis (OpenFaaS Ltd)
2019-12-20 12:56:11 +00:00
parent 9a30ff517f
commit 5c45242b3d
1379 changed files with 633020 additions and 0 deletions

702
vendor/golang.org/x/text/collate/build/builder.go generated vendored Normal file
View File

@ -0,0 +1,702 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package build // import "golang.org/x/text/collate/build"
import (
"fmt"
"io"
"log"
"sort"
"strings"
"unicode/utf8"
"golang.org/x/text/internal/colltab"
"golang.org/x/text/language"
"golang.org/x/text/unicode/norm"
)
// TODO: optimizations:
// - expandElem is currently 20K. By putting unique colElems in a separate
// table and having a byte array of indexes into this table, we can reduce
// the total size to about 7K. By also factoring out the length bytes, we
// can reduce this to about 6K.
// - trie valueBlocks are currently 100K. There are a lot of sparse blocks
// and many consecutive values with the same stride. This can be further
// compacted.
// - Compress secondary weights into 8 bits.
// - Some LDML specs specify a context element. Currently we simply concatenate
// those. Context can be implemented using the contraction trie. If Builder
// could analyze and detect when using a context makes sense, there is no
// need to expose this construct in the API.
// A Builder builds a root collation table. The user must specify the
// collation elements for each entry. A common use will be to base the weights
// on those specified in the allkeys* file as provided by the UCA or CLDR.
type Builder struct {
index *trieBuilder
root ordering
locale []*Tailoring
t *table
err error
built bool
minNonVar int // lowest primary recorded for a variable
varTop int // highest primary recorded for a non-variable
// indexes used for reusing expansions and contractions
expIndex map[string]int // positions of expansions keyed by their string representation
ctHandle map[string]ctHandle // contraction handles keyed by a concatenation of the suffixes
ctElem map[string]int // contraction elements keyed by their string representation
}
// A Tailoring builds a collation table based on another collation table.
// The table is defined by specifying tailorings to the underlying table.
// See https://unicode.org/reports/tr35/ for an overview of tailoring
// collation tables. The CLDR contains pre-defined tailorings for a variety
// of languages (See https://www.unicode.org/Public/cldr/<version>/core.zip.)
type Tailoring struct {
id string
builder *Builder
index *ordering
anchor *entry
before bool
}
// NewBuilder returns a new Builder.
func NewBuilder() *Builder {
return &Builder{
index: newTrieBuilder(),
root: makeRootOrdering(),
expIndex: make(map[string]int),
ctHandle: make(map[string]ctHandle),
ctElem: make(map[string]int),
}
}
// Tailoring returns a Tailoring for the given locale. One should
// have completed all calls to Add before calling Tailoring.
func (b *Builder) Tailoring(loc language.Tag) *Tailoring {
t := &Tailoring{
id: loc.String(),
builder: b,
index: b.root.clone(),
}
t.index.id = t.id
b.locale = append(b.locale, t)
return t
}
// Add adds an entry to the collation element table, mapping
// a slice of runes to a sequence of collation elements.
// A collation element is specified as list of weights: []int{primary, secondary, ...}.
// The entries are typically obtained from a collation element table
// as defined in https://www.unicode.org/reports/tr10/#Data_Table_Format.
// Note that the collation elements specified by colelems are only used
// as a guide. The actual weights generated by Builder may differ.
// The argument variables is a list of indices into colelems that should contain
// a value for each colelem that is a variable. (See the reference above.)
func (b *Builder) Add(runes []rune, colelems [][]int, variables []int) error {
str := string(runes)
elems := make([]rawCE, len(colelems))
for i, ce := range colelems {
if len(ce) == 0 {
break
}
elems[i] = makeRawCE(ce, 0)
if len(ce) == 1 {
elems[i].w[1] = defaultSecondary
}
if len(ce) <= 2 {
elems[i].w[2] = defaultTertiary
}
if len(ce) <= 3 {
elems[i].w[3] = ce[0]
}
}
for i, ce := range elems {
p := ce.w[0]
isvar := false
for _, j := range variables {
if i == j {
isvar = true
}
}
if isvar {
if p >= b.minNonVar && b.minNonVar > 0 {
return fmt.Errorf("primary value %X of variable is larger than the smallest non-variable %X", p, b.minNonVar)
}
if p > b.varTop {
b.varTop = p
}
} else if p > 1 { // 1 is a special primary value reserved for FFFE
if p <= b.varTop {
return fmt.Errorf("primary value %X of non-variable is smaller than the highest variable %X", p, b.varTop)
}
if b.minNonVar == 0 || p < b.minNonVar {
b.minNonVar = p
}
}
}
elems, err := convertLargeWeights(elems)
if err != nil {
return err
}
cccs := []uint8{}
nfd := norm.NFD.String(str)
for i := range nfd {
cccs = append(cccs, norm.NFD.PropertiesString(nfd[i:]).CCC())
}
if len(cccs) < len(elems) {
if len(cccs) > 2 {
return fmt.Errorf("number of decomposed characters should be greater or equal to the number of collation elements for len(colelems) > 3 (%d < %d)", len(cccs), len(elems))
}
p := len(elems) - 1
for ; p > 0 && elems[p].w[0] == 0; p-- {
elems[p].ccc = cccs[len(cccs)-1]
}
for ; p >= 0; p-- {
elems[p].ccc = cccs[0]
}
} else {
for i := range elems {
elems[i].ccc = cccs[i]
}
}
// doNorm in collate.go assumes that the following conditions hold.
if len(elems) > 1 && len(cccs) > 1 && cccs[0] != 0 && cccs[0] != cccs[len(cccs)-1] {
return fmt.Errorf("incompatible CCC values for expansion %X (%d)", runes, cccs)
}
b.root.newEntry(str, elems)
return nil
}
func (t *Tailoring) setAnchor(anchor string) error {
anchor = norm.NFC.String(anchor)
a := t.index.find(anchor)
if a == nil {
a = t.index.newEntry(anchor, nil)
a.implicit = true
a.modified = true
for _, r := range []rune(anchor) {
e := t.index.find(string(r))
e.lock = true
}
}
t.anchor = a
return nil
}
// SetAnchor sets the point after which elements passed in subsequent calls to
// Insert will be inserted. It is equivalent to the reset directive in an LDML
// specification. See Insert for an example.
// SetAnchor supports the following logical reset positions:
// <first_tertiary_ignorable/>, <last_teriary_ignorable/>, <first_primary_ignorable/>,
// and <last_non_ignorable/>.
func (t *Tailoring) SetAnchor(anchor string) error {
if err := t.setAnchor(anchor); err != nil {
return err
}
t.before = false
return nil
}
// SetAnchorBefore is similar to SetAnchor, except that subsequent calls to
// Insert will insert entries before the anchor.
func (t *Tailoring) SetAnchorBefore(anchor string) error {
if err := t.setAnchor(anchor); err != nil {
return err
}
t.before = true
return nil
}
// Insert sets the ordering of str relative to the entry set by the previous
// call to SetAnchor or Insert. The argument extend corresponds
// to the extend elements as defined in LDML. A non-empty value for extend
// will cause the collation elements corresponding to extend to be appended
// to the collation elements generated for the entry added by Insert.
// This has the same net effect as sorting str after the string anchor+extend.
// See https://www.unicode.org/reports/tr10/#Tailoring_Example for details
// on parametric tailoring and https://unicode.org/reports/tr35/#Collation_Elements
// for full details on LDML.
//
// Examples: create a tailoring for Swedish, where "ä" is ordered after "z"
// at the primary sorting level:
// t := b.Tailoring("se")
// t.SetAnchor("z")
// t.Insert(colltab.Primary, "ä", "")
// Order "ü" after "ue" at the secondary sorting level:
// t.SetAnchor("ue")
// t.Insert(colltab.Secondary, "ü","")
// or
// t.SetAnchor("u")
// t.Insert(colltab.Secondary, "ü", "e")
// Order "q" afer "ab" at the secondary level and "Q" after "q"
// at the tertiary level:
// t.SetAnchor("ab")
// t.Insert(colltab.Secondary, "q", "")
// t.Insert(colltab.Tertiary, "Q", "")
// Order "b" before "a":
// t.SetAnchorBefore("a")
// t.Insert(colltab.Primary, "b", "")
// Order "0" after the last primary ignorable:
// t.SetAnchor("<last_primary_ignorable/>")
// t.Insert(colltab.Primary, "0", "")
func (t *Tailoring) Insert(level colltab.Level, str, extend string) error {
if t.anchor == nil {
return fmt.Errorf("%s:Insert: no anchor point set for tailoring of %s", t.id, str)
}
str = norm.NFC.String(str)
e := t.index.find(str)
if e == nil {
e = t.index.newEntry(str, nil)
} else if e.logical != noAnchor {
return fmt.Errorf("%s:Insert: cannot reinsert logical reset position %q", t.id, e.str)
}
if e.lock {
return fmt.Errorf("%s:Insert: cannot reinsert element %q", t.id, e.str)
}
a := t.anchor
// Find the first element after the anchor which differs at a level smaller or
// equal to the given level. Then insert at this position.
// See https://unicode.org/reports/tr35/#Collation_Elements, Section 5.14.5 for details.
e.before = t.before
if t.before {
t.before = false
if a.prev == nil {
a.insertBefore(e)
} else {
for a = a.prev; a.level > level; a = a.prev {
}
a.insertAfter(e)
}
e.level = level
} else {
for ; a.level > level; a = a.next {
}
e.level = a.level
if a != e {
a.insertAfter(e)
a.level = level
} else {
// We don't set a to prev itself. This has the effect of the entry
// getting new collation elements that are an increment of itself.
// This is intentional.
a.prev.level = level
}
}
e.extend = norm.NFD.String(extend)
e.exclude = false
e.modified = true
e.elems = nil
t.anchor = e
return nil
}
func (o *ordering) getWeight(e *entry) []rawCE {
if len(e.elems) == 0 && e.logical == noAnchor {
if e.implicit {
for _, r := range e.runes {
e.elems = append(e.elems, o.getWeight(o.find(string(r)))...)
}
} else if e.before {
count := [colltab.Identity + 1]int{}
a := e
for ; a.elems == nil && !a.implicit; a = a.next {
count[a.level]++
}
e.elems = []rawCE{makeRawCE(a.elems[0].w, a.elems[0].ccc)}
for i := colltab.Primary; i < colltab.Quaternary; i++ {
if count[i] != 0 {
e.elems[0].w[i] -= count[i]
break
}
}
if e.prev != nil {
o.verifyWeights(e.prev, e, e.prev.level)
}
} else {
prev := e.prev
e.elems = nextWeight(prev.level, o.getWeight(prev))
o.verifyWeights(e, e.next, e.level)
}
}
return e.elems
}
func (o *ordering) addExtension(e *entry) {
if ex := o.find(e.extend); ex != nil {
e.elems = append(e.elems, ex.elems...)
} else {
for _, r := range []rune(e.extend) {
e.elems = append(e.elems, o.find(string(r)).elems...)
}
}
e.extend = ""
}
func (o *ordering) verifyWeights(a, b *entry, level colltab.Level) error {
if level == colltab.Identity || b == nil || b.elems == nil || a.elems == nil {
return nil
}
for i := colltab.Primary; i < level; i++ {
if a.elems[0].w[i] < b.elems[0].w[i] {
return nil
}
}
if a.elems[0].w[level] >= b.elems[0].w[level] {
err := fmt.Errorf("%s:overflow: collation elements of %q (%X) overflows those of %q (%X) at level %d (%X >= %X)", o.id, a.str, a.runes, b.str, b.runes, level, a.elems, b.elems)
log.Println(err)
// TODO: return the error instead, or better, fix the conflicting entry by making room.
}
return nil
}
func (b *Builder) error(e error) {
if e != nil {
b.err = e
}
}
func (b *Builder) errorID(locale string, e error) {
if e != nil {
b.err = fmt.Errorf("%s:%v", locale, e)
}
}
// patchNorm ensures that NFC and NFD counterparts are consistent.
func (o *ordering) patchNorm() {
// Insert the NFD counterparts, if necessary.
for _, e := range o.ordered {
nfd := norm.NFD.String(e.str)
if nfd != e.str {
if e0 := o.find(nfd); e0 != nil && !e0.modified {
e0.elems = e.elems
} else if e.modified && !equalCEArrays(o.genColElems(nfd), e.elems) {
e := o.newEntry(nfd, e.elems)
e.modified = true
}
}
}
// Update unchanged composed forms if one of their parts changed.
for _, e := range o.ordered {
nfd := norm.NFD.String(e.str)
if e.modified || nfd == e.str {
continue
}
if e0 := o.find(nfd); e0 != nil {
e.elems = e0.elems
} else {
e.elems = o.genColElems(nfd)
if norm.NFD.LastBoundary([]byte(nfd)) == 0 {
r := []rune(nfd)
head := string(r[0])
tail := ""
for i := 1; i < len(r); i++ {
s := norm.NFC.String(head + string(r[i]))
if e0 := o.find(s); e0 != nil && e0.modified {
head = s
} else {
tail += string(r[i])
}
}
e.elems = append(o.genColElems(head), o.genColElems(tail)...)
}
}
}
// Exclude entries for which the individual runes generate the same collation elements.
for _, e := range o.ordered {
if len(e.runes) > 1 && equalCEArrays(o.genColElems(e.str), e.elems) {
e.exclude = true
}
}
}
func (b *Builder) buildOrdering(o *ordering) {
for _, e := range o.ordered {
o.getWeight(e)
}
for _, e := range o.ordered {
o.addExtension(e)
}
o.patchNorm()
o.sort()
simplify(o)
b.processExpansions(o) // requires simplify
b.processContractions(o) // requires simplify
t := newNode()
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
if !e.skip() {
ce, err := e.encode()
b.errorID(o.id, err)
t.insert(e.runes[0], ce)
}
}
o.handle = b.index.addTrie(t)
}
func (b *Builder) build() (*table, error) {
if b.built {
return b.t, b.err
}
b.built = true
b.t = &table{
Table: colltab.Table{
MaxContractLen: utf8.UTFMax,
VariableTop: uint32(b.varTop),
},
}
b.buildOrdering(&b.root)
b.t.root = b.root.handle
for _, t := range b.locale {
b.buildOrdering(t.index)
if b.err != nil {
break
}
}
i, err := b.index.generate()
b.t.trie = *i
b.t.Index = colltab.Trie{
Index: i.index,
Values: i.values,
Index0: i.index[blockSize*b.t.root.lookupStart:],
Values0: i.values[blockSize*b.t.root.valueStart:],
}
b.error(err)
return b.t, b.err
}
// Build builds the root Collator.
func (b *Builder) Build() (colltab.Weighter, error) {
table, err := b.build()
if err != nil {
return nil, err
}
return table, nil
}
// Build builds a Collator for Tailoring t.
func (t *Tailoring) Build() (colltab.Weighter, error) {
// TODO: implement.
return nil, nil
}
// Print prints the tables for b and all its Tailorings as a Go file
// that can be included in the Collate package.
func (b *Builder) Print(w io.Writer) (n int, err error) {
p := func(nn int, e error) {
n += nn
if err == nil {
err = e
}
}
t, err := b.build()
if err != nil {
return 0, err
}
p(fmt.Fprintf(w, `var availableLocales = "und`))
for _, loc := range b.locale {
if loc.id != "und" {
p(fmt.Fprintf(w, ",%s", loc.id))
}
}
p(fmt.Fprint(w, "\"\n\n"))
p(fmt.Fprintf(w, "const varTop = 0x%x\n\n", b.varTop))
p(fmt.Fprintln(w, "var locales = [...]tableIndex{"))
for _, loc := range b.locale {
if loc.id == "und" {
p(t.fprintIndex(w, loc.index.handle, loc.id))
}
}
for _, loc := range b.locale {
if loc.id != "und" {
p(t.fprintIndex(w, loc.index.handle, loc.id))
}
}
p(fmt.Fprint(w, "}\n\n"))
n, _, err = t.fprint(w, "main")
return
}
// reproducibleFromNFKD checks whether the given expansion could be generated
// from an NFKD expansion.
func reproducibleFromNFKD(e *entry, exp, nfkd []rawCE) bool {
// Length must be equal.
if len(exp) != len(nfkd) {
return false
}
for i, ce := range exp {
// Primary and secondary values should be equal.
if ce.w[0] != nfkd[i].w[0] || ce.w[1] != nfkd[i].w[1] {
return false
}
// Tertiary values should be equal to maxTertiary for third element onwards.
// TODO: there seem to be a lot of cases in CLDR (e.g. ㏭ in zh.xml) that can
// simply be dropped. Try this out by dropping the following code.
if i >= 2 && ce.w[2] != maxTertiary {
return false
}
if _, err := makeCE(ce); err != nil {
// Simply return false. The error will be caught elsewhere.
return false
}
}
return true
}
func simplify(o *ordering) {
// Runes that are a starter of a contraction should not be removed.
// (To date, there is only Kannada character 0CCA.)
keep := make(map[rune]bool)
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
if len(e.runes) > 1 {
keep[e.runes[0]] = true
}
}
// Tag entries for which the runes NFKD decompose to identical values.
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
s := e.str
nfkd := norm.NFKD.String(s)
nfd := norm.NFD.String(s)
if e.decompose || len(e.runes) > 1 || len(e.elems) == 1 || keep[e.runes[0]] || nfkd == nfd {
continue
}
if reproducibleFromNFKD(e, e.elems, o.genColElems(nfkd)) {
e.decompose = true
}
}
}
// appendExpansion converts the given collation sequence to
// collation elements and adds them to the expansion table.
// It returns an index to the expansion table.
func (b *Builder) appendExpansion(e *entry) int {
t := b.t
i := len(t.ExpandElem)
ce := uint32(len(e.elems))
t.ExpandElem = append(t.ExpandElem, ce)
for _, w := range e.elems {
ce, err := makeCE(w)
if err != nil {
b.error(err)
return -1
}
t.ExpandElem = append(t.ExpandElem, ce)
}
return i
}
// processExpansions extracts data necessary to generate
// the extraction tables.
func (b *Builder) processExpansions(o *ordering) {
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
if !e.expansion() {
continue
}
key := fmt.Sprintf("%v", e.elems)
i, ok := b.expIndex[key]
if !ok {
i = b.appendExpansion(e)
b.expIndex[key] = i
}
e.expansionIndex = i
}
}
func (b *Builder) processContractions(o *ordering) {
// Collate contractions per starter rune.
starters := []rune{}
cm := make(map[rune][]*entry)
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
if e.contraction() {
if len(e.str) > b.t.MaxContractLen {
b.t.MaxContractLen = len(e.str)
}
r := e.runes[0]
if _, ok := cm[r]; !ok {
starters = append(starters, r)
}
cm[r] = append(cm[r], e)
}
}
// Add entries of single runes that are at a start of a contraction.
for e := o.front(); e != nil; e, _ = e.nextIndexed() {
if !e.contraction() {
r := e.runes[0]
if _, ok := cm[r]; ok {
cm[r] = append(cm[r], e)
}
}
}
// Build the tries for the contractions.
t := b.t
for _, r := range starters {
l := cm[r]
// Compute suffix strings. There are 31 different contraction suffix
// sets for 715 contractions and 82 contraction starter runes as of
// version 6.0.0.
sufx := []string{}
hasSingle := false
for _, e := range l {
if len(e.runes) > 1 {
sufx = append(sufx, string(e.runes[1:]))
} else {
hasSingle = true
}
}
if !hasSingle {
b.error(fmt.Errorf("no single entry for starter rune %U found", r))
continue
}
// Unique the suffix set.
sort.Strings(sufx)
key := strings.Join(sufx, "\n")
handle, ok := b.ctHandle[key]
if !ok {
var err error
handle, err = appendTrie(&t.ContractTries, sufx)
if err != nil {
b.error(err)
}
b.ctHandle[key] = handle
}
// Bucket sort entries in index order.
es := make([]*entry, len(l))
for _, e := range l {
var p, sn int
if len(e.runes) > 1 {
str := []byte(string(e.runes[1:]))
p, sn = lookup(&t.ContractTries, handle, str)
if sn != len(str) {
log.Fatalf("%s: processContractions: unexpected length for '%X'; len=%d; want %d", o.id, e.runes, sn, len(str))
}
}
if es[p] != nil {
log.Fatalf("%s: multiple contractions for position %d for rune %U", o.id, p, e.runes[0])
}
es[p] = e
}
// Create collation elements for contractions.
elems := []uint32{}
for _, e := range es {
ce, err := e.encodeBase()
b.errorID(o.id, err)
elems = append(elems, ce)
}
key = fmt.Sprintf("%v", elems)
i, ok := b.ctElem[key]
if !ok {
i = len(t.ContractElem)
b.ctElem[key] = i
t.ContractElem = append(t.ContractElem, elems...)
}
// Store info in entry for starter rune.
es[0].contractionIndex = i
es[0].contractionHandle = handle
}
}

294
vendor/golang.org/x/text/collate/build/colelem.go generated vendored Normal file
View File

@ -0,0 +1,294 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package build
import (
"fmt"
"unicode"
"golang.org/x/text/internal/colltab"
)
const (
defaultSecondary = 0x20
defaultTertiary = 0x2
maxTertiary = 0x1F
)
type rawCE struct {
w []int
ccc uint8
}
func makeRawCE(w []int, ccc uint8) rawCE {
ce := rawCE{w: make([]int, 4), ccc: ccc}
copy(ce.w, w)
return ce
}
// A collation element is represented as an uint32.
// In the typical case, a rune maps to a single collation element. If a rune
// can be the start of a contraction or expands into multiple collation elements,
// then the collation element that is associated with a rune will have a special
// form to represent such m to n mappings. Such special collation elements
// have a value >= 0x80000000.
const (
maxPrimaryBits = 21
maxSecondaryBits = 12
maxTertiaryBits = 8
)
func makeCE(ce rawCE) (uint32, error) {
v, e := colltab.MakeElem(ce.w[0], ce.w[1], ce.w[2], ce.ccc)
return uint32(v), e
}
// For contractions, collation elements are of the form
// 110bbbbb bbbbbbbb iiiiiiii iiiinnnn, where
// - n* is the size of the first node in the contraction trie.
// - i* is the index of the first node in the contraction trie.
// - b* is the offset into the contraction collation element table.
// See contract.go for details on the contraction trie.
const (
contractID = 0xC0000000
maxNBits = 4
maxTrieIndexBits = 12
maxContractOffsetBits = 13
)
func makeContractIndex(h ctHandle, offset int) (uint32, error) {
if h.n >= 1<<maxNBits {
return 0, fmt.Errorf("size of contraction trie node too large: %d >= %d", h.n, 1<<maxNBits)
}
if h.index >= 1<<maxTrieIndexBits {
return 0, fmt.Errorf("size of contraction trie offset too large: %d >= %d", h.index, 1<<maxTrieIndexBits)
}
if offset >= 1<<maxContractOffsetBits {
return 0, fmt.Errorf("contraction offset out of bounds: %x >= %x", offset, 1<<maxContractOffsetBits)
}
ce := uint32(contractID)
ce += uint32(offset << (maxNBits + maxTrieIndexBits))
ce += uint32(h.index << maxNBits)
ce += uint32(h.n)
return ce, nil
}
// For expansions, collation elements are of the form
// 11100000 00000000 bbbbbbbb bbbbbbbb,
// where b* is the index into the expansion sequence table.
const (
expandID = 0xE0000000
maxExpandIndexBits = 16
)
func makeExpandIndex(index int) (uint32, error) {
if index >= 1<<maxExpandIndexBits {
return 0, fmt.Errorf("expansion index out of bounds: %x >= %x", index, 1<<maxExpandIndexBits)
}
return expandID + uint32(index), nil
}
// Each list of collation elements corresponding to an expansion starts with
// a header indicating the length of the sequence.
func makeExpansionHeader(n int) (uint32, error) {
return uint32(n), nil
}
// Some runes can be expanded using NFKD decomposition. Instead of storing the full
// sequence of collation elements, we decompose the rune and lookup the collation
// elements for each rune in the decomposition and modify the tertiary weights.
// The collation element, in this case, is of the form
// 11110000 00000000 wwwwwwww vvvvvvvv, where
// - v* is the replacement tertiary weight for the first rune,
// - w* is the replacement tertiary weight for the second rune,
// Tertiary weights of subsequent runes should be replaced with maxTertiary.
// See https://www.unicode.org/reports/tr10/#Compatibility_Decompositions for more details.
const (
decompID = 0xF0000000
)
func makeDecompose(t1, t2 int) (uint32, error) {
if t1 >= 256 || t1 < 0 {
return 0, fmt.Errorf("first tertiary weight out of bounds: %d >= 256", t1)
}
if t2 >= 256 || t2 < 0 {
return 0, fmt.Errorf("second tertiary weight out of bounds: %d >= 256", t2)
}
return uint32(t2<<8+t1) + decompID, nil
}
const (
// These constants were taken from https://www.unicode.org/versions/Unicode6.0.0/ch12.pdf.
minUnified rune = 0x4E00
maxUnified = 0x9FFF
minCompatibility = 0xF900
maxCompatibility = 0xFAFF
minRare = 0x3400
maxRare = 0x4DBF
)
const (
commonUnifiedOffset = 0x10000
rareUnifiedOffset = 0x20000 // largest rune in common is U+FAFF
otherOffset = 0x50000 // largest rune in rare is U+2FA1D
illegalOffset = otherOffset + int(unicode.MaxRune)
maxPrimary = illegalOffset + 1
)
// implicitPrimary returns the primary weight for the a rune
// for which there is no entry for the rune in the collation table.
// We take a different approach from the one specified in
// https://unicode.org/reports/tr10/#Implicit_Weights,
// but preserve the resulting relative ordering of the runes.
func implicitPrimary(r rune) int {
if unicode.Is(unicode.Ideographic, r) {
if r >= minUnified && r <= maxUnified {
// The most common case for CJK.
return int(r) + commonUnifiedOffset
}
if r >= minCompatibility && r <= maxCompatibility {
// This will typically not hit. The DUCET explicitly specifies mappings
// for all characters that do not decompose.
return int(r) + commonUnifiedOffset
}
return int(r) + rareUnifiedOffset
}
return int(r) + otherOffset
}
// convertLargeWeights converts collation elements with large
// primaries (either double primaries or for illegal runes)
// to our own representation.
// A CJK character C is represented in the DUCET as
// [.FBxx.0020.0002.C][.BBBB.0000.0000.C]
// We will rewrite these characters to a single CE.
// We assume the CJK values start at 0x8000.
// See https://unicode.org/reports/tr10/#Implicit_Weights
func convertLargeWeights(elems []rawCE) (res []rawCE, err error) {
const (
cjkPrimaryStart = 0xFB40
rarePrimaryStart = 0xFB80
otherPrimaryStart = 0xFBC0
illegalPrimary = 0xFFFE
highBitsMask = 0x3F
lowBitsMask = 0x7FFF
lowBitsFlag = 0x8000
shiftBits = 15
)
for i := 0; i < len(elems); i++ {
ce := elems[i].w
p := ce[0]
if p < cjkPrimaryStart {
continue
}
if p > 0xFFFF {
return elems, fmt.Errorf("found primary weight %X; should be <= 0xFFFF", p)
}
if p >= illegalPrimary {
ce[0] = illegalOffset + p - illegalPrimary
} else {
if i+1 >= len(elems) {
return elems, fmt.Errorf("second part of double primary weight missing: %v", elems)
}
if elems[i+1].w[0]&lowBitsFlag == 0 {
return elems, fmt.Errorf("malformed second part of double primary weight: %v", elems)
}
np := ((p & highBitsMask) << shiftBits) + elems[i+1].w[0]&lowBitsMask
switch {
case p < rarePrimaryStart:
np += commonUnifiedOffset
case p < otherPrimaryStart:
np += rareUnifiedOffset
default:
p += otherOffset
}
ce[0] = np
for j := i + 1; j+1 < len(elems); j++ {
elems[j] = elems[j+1]
}
elems = elems[:len(elems)-1]
}
}
return elems, nil
}
// nextWeight computes the first possible collation weights following elems
// for the given level.
func nextWeight(level colltab.Level, elems []rawCE) []rawCE {
if level == colltab.Identity {
next := make([]rawCE, len(elems))
copy(next, elems)
return next
}
next := []rawCE{makeRawCE(elems[0].w, elems[0].ccc)}
next[0].w[level]++
if level < colltab.Secondary {
next[0].w[colltab.Secondary] = defaultSecondary
}
if level < colltab.Tertiary {
next[0].w[colltab.Tertiary] = defaultTertiary
}
// Filter entries that cannot influence ordering.
for _, ce := range elems[1:] {
skip := true
for i := colltab.Primary; i < level; i++ {
skip = skip && ce.w[i] == 0
}
if !skip {
next = append(next, ce)
}
}
return next
}
func nextVal(elems []rawCE, i int, level colltab.Level) (index, value int) {
for ; i < len(elems) && elems[i].w[level] == 0; i++ {
}
if i < len(elems) {
return i, elems[i].w[level]
}
return i, 0
}
// compareWeights returns -1 if a < b, 1 if a > b, or 0 otherwise.
// It also returns the collation level at which the difference is found.
func compareWeights(a, b []rawCE) (result int, level colltab.Level) {
for level := colltab.Primary; level < colltab.Identity; level++ {
var va, vb int
for ia, ib := 0, 0; ia < len(a) || ib < len(b); ia, ib = ia+1, ib+1 {
ia, va = nextVal(a, ia, level)
ib, vb = nextVal(b, ib, level)
if va != vb {
if va < vb {
return -1, level
} else {
return 1, level
}
}
}
}
return 0, colltab.Identity
}
func equalCE(a, b rawCE) bool {
for i := 0; i < 3; i++ {
if b.w[i] != a.w[i] {
return false
}
}
return true
}
func equalCEArrays(a, b []rawCE) bool {
if len(a) != len(b) {
return false
}
for i := range a {
if !equalCE(a[i], b[i]) {
return false
}
}
return true
}

309
vendor/golang.org/x/text/collate/build/contract.go generated vendored Normal file
View File

@ -0,0 +1,309 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package build
import (
"fmt"
"io"
"reflect"
"sort"
"strings"
"golang.org/x/text/internal/colltab"
)
// This file contains code for detecting contractions and generating
// the necessary tables.
// Any Unicode Collation Algorithm (UCA) table entry that has more than
// one rune one the left-hand side is called a contraction.
// See https://www.unicode.org/reports/tr10/#Contractions for more details.
//
// We define the following terms:
// initial: a rune that appears as the first rune in a contraction.
// suffix: a sequence of runes succeeding the initial rune
// in a given contraction.
// non-initial: a rune that appears in a suffix.
//
// A rune may be both an initial and a non-initial and may be so in
// many contractions. An initial may typically also appear by itself.
// In case of ambiguities, the UCA requires we match the longest
// contraction.
//
// Many contraction rules share the same set of possible suffixes.
// We store sets of suffixes in a trie that associates an index with
// each suffix in the set. This index can be used to look up a
// collation element associated with the (starter rune, suffix) pair.
//
// The trie is defined on a UTF-8 byte sequence.
// The overall trie is represented as an array of ctEntries. Each node of the trie
// is represented as a subsequence of ctEntries, where each entry corresponds to
// a possible match of a next character in the search string. An entry
// also includes the length and offset to the next sequence of entries
// to check in case of a match.
const (
final = 0
noIndex = 0xFF
)
// ctEntry associates to a matching byte an offset and/or next sequence of
// bytes to check. A ctEntry c is called final if a match means that the
// longest suffix has been found. An entry c is final if c.N == 0.
// A single final entry can match a range of characters to an offset.
// A non-final entry always matches a single byte. Note that a non-final
// entry might still resemble a completed suffix.
// Examples:
// The suffix strings "ab" and "ac" can be represented as:
// []ctEntry{
// {'a', 1, 1, noIndex}, // 'a' by itself does not match, so i is 0xFF.
// {'b', 'c', 0, 1}, // "ab" -> 1, "ac" -> 2
// }
//
// The suffix strings "ab", "abc", "abd", and "abcd" can be represented as:
// []ctEntry{
// {'a', 1, 1, noIndex}, // 'a' must be followed by 'b'.
// {'b', 1, 2, 1}, // "ab" -> 1, may be followed by 'c' or 'd'.
// {'d', 'd', final, 3}, // "abd" -> 3
// {'c', 4, 1, 2}, // "abc" -> 2, may be followed by 'd'.
// {'d', 'd', final, 4}, // "abcd" -> 4
// }
// See genStateTests in contract_test.go for more examples.
type ctEntry struct {
L uint8 // non-final: byte value to match; final: lowest match in range.
H uint8 // non-final: relative index to next block; final: highest match in range.
N uint8 // non-final: length of next block; final: final
I uint8 // result offset. Will be noIndex if more bytes are needed to complete.
}
// contractTrieSet holds a set of contraction tries. The tries are stored
// consecutively in the entry field.
type contractTrieSet []struct{ l, h, n, i uint8 }
// ctHandle is used to identify a trie in the trie set, consisting in an offset
// in the array and the size of the first node.
type ctHandle struct {
index, n int
}
// appendTrie adds a new trie for the given suffixes to the trie set and returns
// a handle to it. The handle will be invalid on error.
func appendTrie(ct *colltab.ContractTrieSet, suffixes []string) (ctHandle, error) {
es := make([]stridx, len(suffixes))
for i, s := range suffixes {
es[i].str = s
}
sort.Sort(offsetSort(es))
for i := range es {
es[i].index = i + 1
}
sort.Sort(genidxSort(es))
i := len(*ct)
n, err := genStates(ct, es)
if err != nil {
*ct = (*ct)[:i]
return ctHandle{}, err
}
return ctHandle{i, n}, nil
}
// genStates generates ctEntries for a given suffix set and returns
// the number of entries for the first node.
func genStates(ct *colltab.ContractTrieSet, sis []stridx) (int, error) {
if len(sis) == 0 {
return 0, fmt.Errorf("genStates: list of suffices must be non-empty")
}
start := len(*ct)
// create entries for differing first bytes.
for _, si := range sis {
s := si.str
if len(s) == 0 {
continue
}
added := false
c := s[0]
if len(s) > 1 {
for j := len(*ct) - 1; j >= start; j-- {
if (*ct)[j].L == c {
added = true
break
}
}
if !added {
*ct = append(*ct, ctEntry{L: c, I: noIndex})
}
} else {
for j := len(*ct) - 1; j >= start; j-- {
// Update the offset for longer suffixes with the same byte.
if (*ct)[j].L == c {
(*ct)[j].I = uint8(si.index)
added = true
}
// Extend range of final ctEntry, if possible.
if (*ct)[j].H+1 == c {
(*ct)[j].H = c
added = true
}
}
if !added {
*ct = append(*ct, ctEntry{L: c, H: c, N: final, I: uint8(si.index)})
}
}
}
n := len(*ct) - start
// Append nodes for the remainder of the suffixes for each ctEntry.
sp := 0
for i, end := start, len(*ct); i < end; i++ {
fe := (*ct)[i]
if fe.H == 0 { // uninitialized non-final
ln := len(*ct) - start - n
if ln > 0xFF {
return 0, fmt.Errorf("genStates: relative block offset too large: %d > 255", ln)
}
fe.H = uint8(ln)
// Find first non-final strings with same byte as current entry.
for ; sis[sp].str[0] != fe.L; sp++ {
}
se := sp + 1
for ; se < len(sis) && len(sis[se].str) > 1 && sis[se].str[0] == fe.L; se++ {
}
sl := sis[sp:se]
sp = se
for i, si := range sl {
sl[i].str = si.str[1:]
}
nn, err := genStates(ct, sl)
if err != nil {
return 0, err
}
fe.N = uint8(nn)
(*ct)[i] = fe
}
}
sort.Sort(entrySort((*ct)[start : start+n]))
return n, nil
}
// There may be both a final and non-final entry for a byte if the byte
// is implied in a range of matches in the final entry.
// We need to ensure that the non-final entry comes first in that case.
type entrySort colltab.ContractTrieSet
func (fe entrySort) Len() int { return len(fe) }
func (fe entrySort) Swap(i, j int) { fe[i], fe[j] = fe[j], fe[i] }
func (fe entrySort) Less(i, j int) bool {
return fe[i].L > fe[j].L
}
// stridx is used for sorting suffixes and their associated offsets.
type stridx struct {
str string
index int
}
// For computing the offsets, we first sort by size, and then by string.
// This ensures that strings that only differ in the last byte by 1
// are sorted consecutively in increasing order such that they can
// be packed as a range in a final ctEntry.
type offsetSort []stridx
func (si offsetSort) Len() int { return len(si) }
func (si offsetSort) Swap(i, j int) { si[i], si[j] = si[j], si[i] }
func (si offsetSort) Less(i, j int) bool {
if len(si[i].str) != len(si[j].str) {
return len(si[i].str) > len(si[j].str)
}
return si[i].str < si[j].str
}
// For indexing, we want to ensure that strings are sorted in string order, where
// for strings with the same prefix, we put longer strings before shorter ones.
type genidxSort []stridx
func (si genidxSort) Len() int { return len(si) }
func (si genidxSort) Swap(i, j int) { si[i], si[j] = si[j], si[i] }
func (si genidxSort) Less(i, j int) bool {
if strings.HasPrefix(si[j].str, si[i].str) {
return false
}
if strings.HasPrefix(si[i].str, si[j].str) {
return true
}
return si[i].str < si[j].str
}
// lookup matches the longest suffix in str and returns the associated offset
// and the number of bytes consumed.
func lookup(ct *colltab.ContractTrieSet, h ctHandle, str []byte) (index, ns int) {
states := (*ct)[h.index:]
p := 0
n := h.n
for i := 0; i < n && p < len(str); {
e := states[i]
c := str[p]
if c >= e.L {
if e.L == c {
p++
if e.I != noIndex {
index, ns = int(e.I), p
}
if e.N != final {
// set to new state
i, states, n = 0, states[int(e.H)+n:], int(e.N)
} else {
return
}
continue
} else if e.N == final && c <= e.H {
p++
return int(c-e.L) + int(e.I), p
}
}
i++
}
return
}
// print writes the contractTrieSet t as compilable Go code to w. It returns
// the total number of bytes written and the size of the resulting data structure in bytes.
func print(t *colltab.ContractTrieSet, w io.Writer, name string) (n, size int, err error) {
update3 := func(nn, sz int, e error) {
n += nn
if err == nil {
err = e
}
size += sz
}
update2 := func(nn int, e error) { update3(nn, 0, e) }
update3(printArray(*t, w, name))
update2(fmt.Fprintf(w, "var %sContractTrieSet = ", name))
update3(printStruct(*t, w, name))
update2(fmt.Fprintln(w))
return
}
func printArray(ct colltab.ContractTrieSet, w io.Writer, name string) (n, size int, err error) {
p := func(f string, a ...interface{}) {
nn, e := fmt.Fprintf(w, f, a...)
n += nn
if err == nil {
err = e
}
}
size = len(ct) * 4
p("// %sCTEntries: %d entries, %d bytes\n", name, len(ct), size)
p("var %sCTEntries = [%d]struct{L,H,N,I uint8}{\n", name, len(ct))
for _, fe := range ct {
p("\t{0x%X, 0x%X, %d, %d},\n", fe.L, fe.H, fe.N, fe.I)
}
p("}\n")
return
}
func printStruct(ct colltab.ContractTrieSet, w io.Writer, name string) (n, size int, err error) {
n, err = fmt.Fprintf(w, "colltab.ContractTrieSet( %sCTEntries[:] )", name)
size = int(reflect.TypeOf(ct).Size())
return
}

393
vendor/golang.org/x/text/collate/build/order.go generated vendored Normal file
View File

@ -0,0 +1,393 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package build
import (
"fmt"
"log"
"sort"
"strings"
"unicode"
"golang.org/x/text/internal/colltab"
"golang.org/x/text/unicode/norm"
)
type logicalAnchor int
const (
firstAnchor logicalAnchor = -1
noAnchor = 0
lastAnchor = 1
)
// entry is used to keep track of a single entry in the collation element table
// during building. Examples of entries can be found in the Default Unicode
// Collation Element Table.
// See https://www.unicode.org/Public/UCA/6.0.0/allkeys.txt.
type entry struct {
str string // same as string(runes)
runes []rune
elems []rawCE // the collation elements
extend string // weights of extend to be appended to elems
before bool // weights relative to next instead of previous.
lock bool // entry is used in extension and can no longer be moved.
// prev, next, and level are used to keep track of tailorings.
prev, next *entry
level colltab.Level // next differs at this level
skipRemove bool // do not unlink when removed
decompose bool // can use NFKD decomposition to generate elems
exclude bool // do not include in table
implicit bool // derived, is not included in the list
modified bool // entry was modified in tailoring
logical logicalAnchor
expansionIndex int // used to store index into expansion table
contractionHandle ctHandle
contractionIndex int // index into contraction elements
}
func (e *entry) String() string {
return fmt.Sprintf("%X (%q) -> %X (ch:%x; ci:%d, ei:%d)",
e.runes, e.str, e.elems, e.contractionHandle, e.contractionIndex, e.expansionIndex)
}
func (e *entry) skip() bool {
return e.contraction()
}
func (e *entry) expansion() bool {
return !e.decompose && len(e.elems) > 1
}
func (e *entry) contraction() bool {
return len(e.runes) > 1
}
func (e *entry) contractionStarter() bool {
return e.contractionHandle.n != 0
}
// nextIndexed gets the next entry that needs to be stored in the table.
// It returns the entry and the collation level at which the next entry differs
// from the current entry.
// Entries that can be explicitly derived and logical reset positions are
// examples of entries that will not be indexed.
func (e *entry) nextIndexed() (*entry, colltab.Level) {
level := e.level
for e = e.next; e != nil && (e.exclude || len(e.elems) == 0); e = e.next {
if e.level < level {
level = e.level
}
}
return e, level
}
// remove unlinks entry e from the sorted chain and clears the collation
// elements. e may not be at the front or end of the list. This should always
// be the case, as the front and end of the list are always logical anchors,
// which may not be removed.
func (e *entry) remove() {
if e.logical != noAnchor {
log.Fatalf("may not remove anchor %q", e.str)
}
// TODO: need to set e.prev.level to e.level if e.level is smaller?
e.elems = nil
if !e.skipRemove {
if e.prev != nil {
e.prev.next = e.next
}
if e.next != nil {
e.next.prev = e.prev
}
}
e.skipRemove = false
}
// insertAfter inserts n after e.
func (e *entry) insertAfter(n *entry) {
if e == n {
panic("e == anchor")
}
if e == nil {
panic("unexpected nil anchor")
}
n.remove()
n.decompose = false // redo decomposition test
n.next = e.next
n.prev = e
if e.next != nil {
e.next.prev = n
}
e.next = n
}
// insertBefore inserts n before e.
func (e *entry) insertBefore(n *entry) {
if e == n {
panic("e == anchor")
}
if e == nil {
panic("unexpected nil anchor")
}
n.remove()
n.decompose = false // redo decomposition test
n.prev = e.prev
n.next = e
if e.prev != nil {
e.prev.next = n
}
e.prev = n
}
func (e *entry) encodeBase() (ce uint32, err error) {
switch {
case e.expansion():
ce, err = makeExpandIndex(e.expansionIndex)
default:
if e.decompose {
log.Fatal("decompose should be handled elsewhere")
}
ce, err = makeCE(e.elems[0])
}
return
}
func (e *entry) encode() (ce uint32, err error) {
if e.skip() {
log.Fatal("cannot build colElem for entry that should be skipped")
}
switch {
case e.decompose:
t1 := e.elems[0].w[2]
t2 := 0
if len(e.elems) > 1 {
t2 = e.elems[1].w[2]
}
ce, err = makeDecompose(t1, t2)
case e.contractionStarter():
ce, err = makeContractIndex(e.contractionHandle, e.contractionIndex)
default:
if len(e.runes) > 1 {
log.Fatal("colElem: contractions are handled in contraction trie")
}
ce, err = e.encodeBase()
}
return
}
// entryLess returns true if a sorts before b and false otherwise.
func entryLess(a, b *entry) bool {
if res, _ := compareWeights(a.elems, b.elems); res != 0 {
return res == -1
}
if a.logical != noAnchor {
return a.logical == firstAnchor
}
if b.logical != noAnchor {
return b.logical == lastAnchor
}
return a.str < b.str
}
type sortedEntries []*entry
func (s sortedEntries) Len() int {
return len(s)
}
func (s sortedEntries) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s sortedEntries) Less(i, j int) bool {
return entryLess(s[i], s[j])
}
type ordering struct {
id string
entryMap map[string]*entry
ordered []*entry
handle *trieHandle
}
// insert inserts e into both entryMap and ordered.
// Note that insert simply appends e to ordered. To reattain a sorted
// order, o.sort() should be called.
func (o *ordering) insert(e *entry) {
if e.logical == noAnchor {
o.entryMap[e.str] = e
} else {
// Use key format as used in UCA rules.
o.entryMap[fmt.Sprintf("[%s]", e.str)] = e
// Also add index entry for XML format.
o.entryMap[fmt.Sprintf("<%s/>", strings.Replace(e.str, " ", "_", -1))] = e
}
o.ordered = append(o.ordered, e)
}
// newEntry creates a new entry for the given info and inserts it into
// the index.
func (o *ordering) newEntry(s string, ces []rawCE) *entry {
e := &entry{
runes: []rune(s),
elems: ces,
str: s,
}
o.insert(e)
return e
}
// find looks up and returns the entry for the given string.
// It returns nil if str is not in the index and if an implicit value
// cannot be derived, that is, if str represents more than one rune.
func (o *ordering) find(str string) *entry {
e := o.entryMap[str]
if e == nil {
r := []rune(str)
if len(r) == 1 {
const (
firstHangul = 0xAC00
lastHangul = 0xD7A3
)
if r[0] >= firstHangul && r[0] <= lastHangul {
ce := []rawCE{}
nfd := norm.NFD.String(str)
for _, r := range nfd {
ce = append(ce, o.find(string(r)).elems...)
}
e = o.newEntry(nfd, ce)
} else {
e = o.newEntry(string(r[0]), []rawCE{
{w: []int{
implicitPrimary(r[0]),
defaultSecondary,
defaultTertiary,
int(r[0]),
},
},
})
e.modified = true
}
e.exclude = true // do not index implicits
}
}
return e
}
// makeRootOrdering returns a newly initialized ordering value and populates
// it with a set of logical reset points that can be used as anchors.
// The anchors first_tertiary_ignorable and __END__ will always sort at
// the beginning and end, respectively. This means that prev and next are non-nil
// for any indexed entry.
func makeRootOrdering() ordering {
const max = unicode.MaxRune
o := ordering{
entryMap: make(map[string]*entry),
}
insert := func(typ logicalAnchor, s string, ce []int) {
e := &entry{
elems: []rawCE{{w: ce}},
str: s,
exclude: true,
logical: typ,
}
o.insert(e)
}
insert(firstAnchor, "first tertiary ignorable", []int{0, 0, 0, 0})
insert(lastAnchor, "last tertiary ignorable", []int{0, 0, 0, max})
insert(lastAnchor, "last primary ignorable", []int{0, defaultSecondary, defaultTertiary, max})
insert(lastAnchor, "last non ignorable", []int{maxPrimary, defaultSecondary, defaultTertiary, max})
insert(lastAnchor, "__END__", []int{1 << maxPrimaryBits, defaultSecondary, defaultTertiary, max})
return o
}
// patchForInsert eleminates entries from the list with more than one collation element.
// The next and prev fields of the eliminated entries still point to appropriate
// values in the newly created list.
// It requires that sort has been called.
func (o *ordering) patchForInsert() {
for i := 0; i < len(o.ordered)-1; {
e := o.ordered[i]
lev := e.level
n := e.next
for ; n != nil && len(n.elems) > 1; n = n.next {
if n.level < lev {
lev = n.level
}
n.skipRemove = true
}
for ; o.ordered[i] != n; i++ {
o.ordered[i].level = lev
o.ordered[i].next = n
o.ordered[i+1].prev = e
}
}
}
// clone copies all ordering of es into a new ordering value.
func (o *ordering) clone() *ordering {
o.sort()
oo := ordering{
entryMap: make(map[string]*entry),
}
for _, e := range o.ordered {
ne := &entry{
runes: e.runes,
elems: e.elems,
str: e.str,
decompose: e.decompose,
exclude: e.exclude,
logical: e.logical,
}
oo.insert(ne)
}
oo.sort() // link all ordering.
oo.patchForInsert()
return &oo
}
// front returns the first entry to be indexed.
// It assumes that sort() has been called.
func (o *ordering) front() *entry {
e := o.ordered[0]
if e.prev != nil {
log.Panicf("unexpected first entry: %v", e)
}
// The first entry is always a logical position, which should not be indexed.
e, _ = e.nextIndexed()
return e
}
// sort sorts all ordering based on their collation elements and initializes
// the prev, next, and level fields accordingly.
func (o *ordering) sort() {
sort.Sort(sortedEntries(o.ordered))
l := o.ordered
for i := 1; i < len(l); i++ {
k := i - 1
l[k].next = l[i]
_, l[k].level = compareWeights(l[k].elems, l[i].elems)
l[i].prev = l[k]
}
}
// genColElems generates a collation element array from the runes in str. This
// assumes that all collation elements have already been added to the Builder.
func (o *ordering) genColElems(str string) []rawCE {
elems := []rawCE{}
for _, r := range []rune(str) {
for _, ce := range o.find(string(r)).elems {
if ce.w[0] != 0 || ce.w[1] != 0 || ce.w[2] != 0 {
elems = append(elems, ce)
}
}
}
return elems
}

81
vendor/golang.org/x/text/collate/build/table.go generated vendored Normal file
View File

@ -0,0 +1,81 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package build
import (
"fmt"
"io"
"reflect"
"golang.org/x/text/internal/colltab"
)
// table is an intermediate structure that roughly resembles the table in collate.
type table struct {
colltab.Table
trie trie
root *trieHandle
}
// print writes the table as Go compilable code to w. It prefixes the
// variable names with name. It returns the number of bytes written
// and the size of the resulting table.
func (t *table) fprint(w io.Writer, name string) (n, size int, err error) {
update := func(nn, sz int, e error) {
n += nn
if err == nil {
err = e
}
size += sz
}
// Write arrays needed for the structure.
update(printColElems(w, t.ExpandElem, name+"ExpandElem"))
update(printColElems(w, t.ContractElem, name+"ContractElem"))
update(t.trie.printArrays(w, name))
update(printArray(t.ContractTries, w, name))
nn, e := fmt.Fprintf(w, "// Total size of %sTable is %d bytes\n", name, size)
update(nn, 0, e)
return
}
func (t *table) fprintIndex(w io.Writer, h *trieHandle, id string) (n int, err error) {
p := func(f string, a ...interface{}) {
nn, e := fmt.Fprintf(w, f, a...)
n += nn
if err == nil {
err = e
}
}
p("\t{ // %s\n", id)
p("\t\tlookupOffset: 0x%x,\n", h.lookupStart)
p("\t\tvaluesOffset: 0x%x,\n", h.valueStart)
p("\t},\n")
return
}
func printColElems(w io.Writer, a []uint32, name string) (n, sz int, err error) {
p := func(f string, a ...interface{}) {
nn, e := fmt.Fprintf(w, f, a...)
n += nn
if err == nil {
err = e
}
}
sz = len(a) * int(reflect.TypeOf(uint32(0)).Size())
p("// %s: %d entries, %d bytes\n", name, len(a), sz)
p("var %s = [%d]uint32 {", name, len(a))
for i, c := range a {
switch {
case i%64 == 0:
p("\n\t// Block %d, offset 0x%x\n", i/64, i)
case (i%64)%6 == 0:
p("\n\t")
}
p("0x%.8X, ", c)
}
p("\n}\n\n")
return
}

290
vendor/golang.org/x/text/collate/build/trie.go generated vendored Normal file
View File

@ -0,0 +1,290 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// The trie in this file is used to associate the first full character
// in a UTF-8 string to a collation element.
// All but the last byte in a UTF-8 byte sequence are
// used to look up offsets in the index table to be used for the next byte.
// The last byte is used to index into a table of collation elements.
// This file contains the code for the generation of the trie.
package build
import (
"fmt"
"hash/fnv"
"io"
"reflect"
)
const (
blockSize = 64
blockOffset = 2 // Subtract 2 blocks to compensate for the 0x80 added to continuation bytes.
)
type trieHandle struct {
lookupStart uint16 // offset in table for first byte
valueStart uint16 // offset in table for first byte
}
type trie struct {
index []uint16
values []uint32
}
// trieNode is the intermediate trie structure used for generating a trie.
type trieNode struct {
index []*trieNode
value []uint32
b byte
refValue uint16
refIndex uint16
}
func newNode() *trieNode {
return &trieNode{
index: make([]*trieNode, 64),
value: make([]uint32, 128), // root node size is 128 instead of 64
}
}
func (n *trieNode) isInternal() bool {
return n.value != nil
}
func (n *trieNode) insert(r rune, value uint32) {
const maskx = 0x3F // mask out two most-significant bits
str := string(r)
if len(str) == 1 {
n.value[str[0]] = value
return
}
for i := 0; i < len(str)-1; i++ {
b := str[i] & maskx
if n.index == nil {
n.index = make([]*trieNode, blockSize)
}
nn := n.index[b]
if nn == nil {
nn = &trieNode{}
nn.b = b
n.index[b] = nn
}
n = nn
}
if n.value == nil {
n.value = make([]uint32, blockSize)
}
b := str[len(str)-1] & maskx
n.value[b] = value
}
type trieBuilder struct {
t *trie
roots []*trieHandle
lookupBlocks []*trieNode
valueBlocks []*trieNode
lookupBlockIdx map[uint32]*trieNode
valueBlockIdx map[uint32]*trieNode
}
func newTrieBuilder() *trieBuilder {
index := &trieBuilder{}
index.lookupBlocks = make([]*trieNode, 0)
index.valueBlocks = make([]*trieNode, 0)
index.lookupBlockIdx = make(map[uint32]*trieNode)
index.valueBlockIdx = make(map[uint32]*trieNode)
// The third nil is the default null block. The other two blocks
// are used to guarantee an offset of at least 3 for each block.
index.lookupBlocks = append(index.lookupBlocks, nil, nil, nil)
index.t = &trie{}
return index
}
func (b *trieBuilder) computeOffsets(n *trieNode) *trieNode {
hasher := fnv.New32()
if n.index != nil {
for i, nn := range n.index {
var vi, vv uint16
if nn != nil {
nn = b.computeOffsets(nn)
n.index[i] = nn
vi = nn.refIndex
vv = nn.refValue
}
hasher.Write([]byte{byte(vi >> 8), byte(vi)})
hasher.Write([]byte{byte(vv >> 8), byte(vv)})
}
h := hasher.Sum32()
nn, ok := b.lookupBlockIdx[h]
if !ok {
n.refIndex = uint16(len(b.lookupBlocks)) - blockOffset
b.lookupBlocks = append(b.lookupBlocks, n)
b.lookupBlockIdx[h] = n
} else {
n = nn
}
} else {
for _, v := range n.value {
hasher.Write([]byte{byte(v >> 24), byte(v >> 16), byte(v >> 8), byte(v)})
}
h := hasher.Sum32()
nn, ok := b.valueBlockIdx[h]
if !ok {
n.refValue = uint16(len(b.valueBlocks)) - blockOffset
n.refIndex = n.refValue
b.valueBlocks = append(b.valueBlocks, n)
b.valueBlockIdx[h] = n
} else {
n = nn
}
}
return n
}
func (b *trieBuilder) addStartValueBlock(n *trieNode) uint16 {
hasher := fnv.New32()
for _, v := range n.value[:2*blockSize] {
hasher.Write([]byte{byte(v >> 24), byte(v >> 16), byte(v >> 8), byte(v)})
}
h := hasher.Sum32()
nn, ok := b.valueBlockIdx[h]
if !ok {
n.refValue = uint16(len(b.valueBlocks))
n.refIndex = n.refValue
b.valueBlocks = append(b.valueBlocks, n)
// Add a dummy block to accommodate the double block size.
b.valueBlocks = append(b.valueBlocks, nil)
b.valueBlockIdx[h] = n
} else {
n = nn
}
return n.refValue
}
func genValueBlock(t *trie, n *trieNode) {
if n != nil {
for _, v := range n.value {
t.values = append(t.values, v)
}
}
}
func genLookupBlock(t *trie, n *trieNode) {
for _, nn := range n.index {
v := uint16(0)
if nn != nil {
if n.index != nil {
v = nn.refIndex
} else {
v = nn.refValue
}
}
t.index = append(t.index, v)
}
}
func (b *trieBuilder) addTrie(n *trieNode) *trieHandle {
h := &trieHandle{}
b.roots = append(b.roots, h)
h.valueStart = b.addStartValueBlock(n)
if len(b.roots) == 1 {
// We insert a null block after the first start value block.
// This ensures that continuation bytes UTF-8 sequences of length
// greater than 2 will automatically hit a null block if there
// was an undefined entry.
b.valueBlocks = append(b.valueBlocks, nil)
}
n = b.computeOffsets(n)
// Offset by one extra block as the first byte starts at 0xC0 instead of 0x80.
h.lookupStart = n.refIndex - 1
return h
}
// generate generates and returns the trie for n.
func (b *trieBuilder) generate() (t *trie, err error) {
t = b.t
if len(b.valueBlocks) >= 1<<16 {
return nil, fmt.Errorf("maximum number of value blocks exceeded (%d > %d)", len(b.valueBlocks), 1<<16)
}
if len(b.lookupBlocks) >= 1<<16 {
return nil, fmt.Errorf("maximum number of lookup blocks exceeded (%d > %d)", len(b.lookupBlocks), 1<<16)
}
genValueBlock(t, b.valueBlocks[0])
genValueBlock(t, &trieNode{value: make([]uint32, 64)})
for i := 2; i < len(b.valueBlocks); i++ {
genValueBlock(t, b.valueBlocks[i])
}
n := &trieNode{index: make([]*trieNode, 64)}
genLookupBlock(t, n)
genLookupBlock(t, n)
genLookupBlock(t, n)
for i := 3; i < len(b.lookupBlocks); i++ {
genLookupBlock(t, b.lookupBlocks[i])
}
return b.t, nil
}
func (t *trie) printArrays(w io.Writer, name string) (n, size int, err error) {
p := func(f string, a ...interface{}) {
nn, e := fmt.Fprintf(w, f, a...)
n += nn
if err == nil {
err = e
}
}
nv := len(t.values)
p("// %sValues: %d entries, %d bytes\n", name, nv, nv*4)
p("// Block 2 is the null block.\n")
p("var %sValues = [%d]uint32 {", name, nv)
var printnewline bool
for i, v := range t.values {
if i%blockSize == 0 {
p("\n\t// Block %#x, offset %#x", i/blockSize, i)
}
if i%4 == 0 {
printnewline = true
}
if v != 0 {
if printnewline {
p("\n\t")
printnewline = false
}
p("%#04x:%#08x, ", i, v)
}
}
p("\n}\n\n")
ni := len(t.index)
p("// %sLookup: %d entries, %d bytes\n", name, ni, ni*2)
p("// Block 0 is the null block.\n")
p("var %sLookup = [%d]uint16 {", name, ni)
printnewline = false
for i, v := range t.index {
if i%blockSize == 0 {
p("\n\t// Block %#x, offset %#x", i/blockSize, i)
}
if i%8 == 0 {
printnewline = true
}
if v != 0 {
if printnewline {
p("\n\t")
printnewline = false
}
p("%#03x:%#02x, ", i, v)
}
}
p("\n}\n\n")
return n, nv*4 + ni*2, err
}
func (t *trie) printStruct(w io.Writer, handle *trieHandle, name string) (n, sz int, err error) {
const msg = "trie{ %sLookup[%d:], %sValues[%d:], %sLookup[:], %sValues[:]}"
n, err = fmt.Fprintf(w, msg, name, handle.lookupStart*blockSize, name, handle.valueStart*blockSize, name, name)
sz += int(reflect.TypeOf(trie{}).Size())
return
}

403
vendor/golang.org/x/text/collate/collate.go generated vendored Normal file
View File

@ -0,0 +1,403 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TODO: remove hard-coded versions when we have implemented fractional weights.
// The current implementation is incompatible with later CLDR versions.
//go:generate go run maketables.go -cldr=23 -unicode=6.2.0
// Package collate contains types for comparing and sorting Unicode strings
// according to a given collation order.
package collate // import "golang.org/x/text/collate"
import (
"bytes"
"strings"
"golang.org/x/text/internal/colltab"
"golang.org/x/text/language"
)
// Collator provides functionality for comparing strings for a given
// collation order.
type Collator struct {
options
sorter sorter
_iter [2]iter
}
func (c *Collator) iter(i int) *iter {
// TODO: evaluate performance for making the second iterator optional.
return &c._iter[i]
}
// Supported returns the list of languages for which collating differs from its parent.
func Supported() []language.Tag {
// TODO: use language.Coverage instead.
t := make([]language.Tag, len(tags))
copy(t, tags)
return t
}
func init() {
ids := strings.Split(availableLocales, ",")
tags = make([]language.Tag, len(ids))
for i, s := range ids {
tags[i] = language.Raw.MustParse(s)
}
}
var tags []language.Tag
// New returns a new Collator initialized for the given locale.
func New(t language.Tag, o ...Option) *Collator {
index := colltab.MatchLang(t, tags)
c := newCollator(getTable(locales[index]))
// Set options from the user-supplied tag.
c.setFromTag(t)
// Set the user-supplied options.
c.setOptions(o)
c.init()
return c
}
// NewFromTable returns a new Collator for the given Weighter.
func NewFromTable(w colltab.Weighter, o ...Option) *Collator {
c := newCollator(w)
c.setOptions(o)
c.init()
return c
}
func (c *Collator) init() {
if c.numeric {
c.t = colltab.NewNumericWeighter(c.t)
}
c._iter[0].init(c)
c._iter[1].init(c)
}
// Buffer holds keys generated by Key and KeyString.
type Buffer struct {
buf [4096]byte
key []byte
}
func (b *Buffer) init() {
if b.key == nil {
b.key = b.buf[:0]
}
}
// Reset clears the buffer from previous results generated by Key and KeyString.
func (b *Buffer) Reset() {
b.key = b.key[:0]
}
// Compare returns an integer comparing the two byte slices.
// The result will be 0 if a==b, -1 if a < b, and +1 if a > b.
func (c *Collator) Compare(a, b []byte) int {
// TODO: skip identical prefixes once we have a fast way to detect if a rune is
// part of a contraction. This would lead to roughly a 10% speedup for the colcmp regtest.
c.iter(0).SetInput(a)
c.iter(1).SetInput(b)
if res := c.compare(); res != 0 {
return res
}
if !c.ignore[colltab.Identity] {
return bytes.Compare(a, b)
}
return 0
}
// CompareString returns an integer comparing the two strings.
// The result will be 0 if a==b, -1 if a < b, and +1 if a > b.
func (c *Collator) CompareString(a, b string) int {
// TODO: skip identical prefixes once we have a fast way to detect if a rune is
// part of a contraction. This would lead to roughly a 10% speedup for the colcmp regtest.
c.iter(0).SetInputString(a)
c.iter(1).SetInputString(b)
if res := c.compare(); res != 0 {
return res
}
if !c.ignore[colltab.Identity] {
if a < b {
return -1
} else if a > b {
return 1
}
}
return 0
}
func compareLevel(f func(i *iter) int, a, b *iter) int {
a.pce = 0
b.pce = 0
for {
va := f(a)
vb := f(b)
if va != vb {
if va < vb {
return -1
}
return 1
} else if va == 0 {
break
}
}
return 0
}
func (c *Collator) compare() int {
ia, ib := c.iter(0), c.iter(1)
// Process primary level
if c.alternate != altShifted {
// TODO: implement script reordering
if res := compareLevel((*iter).nextPrimary, ia, ib); res != 0 {
return res
}
} else {
// TODO: handle shifted
}
if !c.ignore[colltab.Secondary] {
f := (*iter).nextSecondary
if c.backwards {
f = (*iter).prevSecondary
}
if res := compareLevel(f, ia, ib); res != 0 {
return res
}
}
// TODO: special case handling (Danish?)
if !c.ignore[colltab.Tertiary] || c.caseLevel {
if res := compareLevel((*iter).nextTertiary, ia, ib); res != 0 {
return res
}
if !c.ignore[colltab.Quaternary] {
if res := compareLevel((*iter).nextQuaternary, ia, ib); res != 0 {
return res
}
}
}
return 0
}
// Key returns the collation key for str.
// Passing the buffer buf may avoid memory allocations.
// The returned slice will point to an allocation in Buffer and will remain
// valid until the next call to buf.Reset().
func (c *Collator) Key(buf *Buffer, str []byte) []byte {
// See https://www.unicode.org/reports/tr10/#Main_Algorithm for more details.
buf.init()
return c.key(buf, c.getColElems(str))
}
// KeyFromString returns the collation key for str.
// Passing the buffer buf may avoid memory allocations.
// The returned slice will point to an allocation in Buffer and will retain
// valid until the next call to buf.ResetKeys().
func (c *Collator) KeyFromString(buf *Buffer, str string) []byte {
// See https://www.unicode.org/reports/tr10/#Main_Algorithm for more details.
buf.init()
return c.key(buf, c.getColElemsString(str))
}
func (c *Collator) key(buf *Buffer, w []colltab.Elem) []byte {
processWeights(c.alternate, c.t.Top(), w)
kn := len(buf.key)
c.keyFromElems(buf, w)
return buf.key[kn:]
}
func (c *Collator) getColElems(str []byte) []colltab.Elem {
i := c.iter(0)
i.SetInput(str)
for i.Next() {
}
return i.Elems
}
func (c *Collator) getColElemsString(str string) []colltab.Elem {
i := c.iter(0)
i.SetInputString(str)
for i.Next() {
}
return i.Elems
}
type iter struct {
wa [512]colltab.Elem
colltab.Iter
pce int
}
func (i *iter) init(c *Collator) {
i.Weighter = c.t
i.Elems = i.wa[:0]
}
func (i *iter) nextPrimary() int {
for {
for ; i.pce < i.N; i.pce++ {
if v := i.Elems[i.pce].Primary(); v != 0 {
i.pce++
return v
}
}
if !i.Next() {
return 0
}
}
panic("should not reach here")
}
func (i *iter) nextSecondary() int {
for ; i.pce < len(i.Elems); i.pce++ {
if v := i.Elems[i.pce].Secondary(); v != 0 {
i.pce++
return v
}
}
return 0
}
func (i *iter) prevSecondary() int {
for ; i.pce < len(i.Elems); i.pce++ {
if v := i.Elems[len(i.Elems)-i.pce-1].Secondary(); v != 0 {
i.pce++
return v
}
}
return 0
}
func (i *iter) nextTertiary() int {
for ; i.pce < len(i.Elems); i.pce++ {
if v := i.Elems[i.pce].Tertiary(); v != 0 {
i.pce++
return int(v)
}
}
return 0
}
func (i *iter) nextQuaternary() int {
for ; i.pce < len(i.Elems); i.pce++ {
if v := i.Elems[i.pce].Quaternary(); v != 0 {
i.pce++
return v
}
}
return 0
}
func appendPrimary(key []byte, p int) []byte {
// Convert to variable length encoding; supports up to 23 bits.
if p <= 0x7FFF {
key = append(key, uint8(p>>8), uint8(p))
} else {
key = append(key, uint8(p>>16)|0x80, uint8(p>>8), uint8(p))
}
return key
}
// keyFromElems converts the weights ws to a compact sequence of bytes.
// The result will be appended to the byte buffer in buf.
func (c *Collator) keyFromElems(buf *Buffer, ws []colltab.Elem) {
for _, v := range ws {
if w := v.Primary(); w > 0 {
buf.key = appendPrimary(buf.key, w)
}
}
if !c.ignore[colltab.Secondary] {
buf.key = append(buf.key, 0, 0)
// TODO: we can use one 0 if we can guarantee that all non-zero weights are > 0xFF.
if !c.backwards {
for _, v := range ws {
if w := v.Secondary(); w > 0 {
buf.key = append(buf.key, uint8(w>>8), uint8(w))
}
}
} else {
for i := len(ws) - 1; i >= 0; i-- {
if w := ws[i].Secondary(); w > 0 {
buf.key = append(buf.key, uint8(w>>8), uint8(w))
}
}
}
} else if c.caseLevel {
buf.key = append(buf.key, 0, 0)
}
if !c.ignore[colltab.Tertiary] || c.caseLevel {
buf.key = append(buf.key, 0, 0)
for _, v := range ws {
if w := v.Tertiary(); w > 0 {
buf.key = append(buf.key, uint8(w))
}
}
// Derive the quaternary weights from the options and other levels.
// Note that we represent MaxQuaternary as 0xFF. The first byte of the
// representation of a primary weight is always smaller than 0xFF,
// so using this single byte value will compare correctly.
if !c.ignore[colltab.Quaternary] && c.alternate >= altShifted {
if c.alternate == altShiftTrimmed {
lastNonFFFF := len(buf.key)
buf.key = append(buf.key, 0)
for _, v := range ws {
if w := v.Quaternary(); w == colltab.MaxQuaternary {
buf.key = append(buf.key, 0xFF)
} else if w > 0 {
buf.key = appendPrimary(buf.key, w)
lastNonFFFF = len(buf.key)
}
}
buf.key = buf.key[:lastNonFFFF]
} else {
buf.key = append(buf.key, 0)
for _, v := range ws {
if w := v.Quaternary(); w == colltab.MaxQuaternary {
buf.key = append(buf.key, 0xFF)
} else if w > 0 {
buf.key = appendPrimary(buf.key, w)
}
}
}
}
}
}
func processWeights(vw alternateHandling, top uint32, wa []colltab.Elem) {
ignore := false
vtop := int(top)
switch vw {
case altShifted, altShiftTrimmed:
for i := range wa {
if p := wa[i].Primary(); p <= vtop && p != 0 {
wa[i] = colltab.MakeQuaternary(p)
ignore = true
} else if p == 0 {
if ignore {
wa[i] = colltab.Ignore
}
} else {
ignore = false
}
}
case altBlanked:
for i := range wa {
if p := wa[i].Primary(); p <= vtop && (ignore || p != 0) {
wa[i] = colltab.Ignore
ignore = true
} else {
ignore = false
}
}
}
}

32
vendor/golang.org/x/text/collate/index.go generated vendored Normal file
View File

@ -0,0 +1,32 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package collate
import "golang.org/x/text/internal/colltab"
const blockSize = 64
func getTable(t tableIndex) *colltab.Table {
return &colltab.Table{
Index: colltab.Trie{
Index0: mainLookup[:][blockSize*t.lookupOffset:],
Values0: mainValues[:][blockSize*t.valuesOffset:],
Index: mainLookup[:],
Values: mainValues[:],
},
ExpandElem: mainExpandElem[:],
ContractTries: colltab.ContractTrieSet(mainCTEntries[:]),
ContractElem: mainContractElem[:],
MaxContractLen: 18,
VariableTop: varTop,
}
}
// tableIndex holds information for constructing a table
// for a certain locale based on the main table.
type tableIndex struct {
lookupOffset uint32
valuesOffset uint32
}

553
vendor/golang.org/x/text/collate/maketables.go generated vendored Normal file
View File

@ -0,0 +1,553 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// Collation table generator.
// Data read from the web.
package main
import (
"archive/zip"
"bufio"
"bytes"
"flag"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"regexp"
"sort"
"strconv"
"strings"
"unicode/utf8"
"golang.org/x/text/collate"
"golang.org/x/text/collate/build"
"golang.org/x/text/internal/colltab"
"golang.org/x/text/internal/gen"
"golang.org/x/text/language"
"golang.org/x/text/unicode/cldr"
)
var (
test = flag.Bool("test", false,
"test existing tables; can be used to compare web data with package data.")
short = flag.Bool("short", false, `Use "short" alternatives, when available.`)
draft = flag.Bool("draft", false, `Use draft versions, when available.`)
tags = flag.String("tags", "", "build tags to be included after +build directive")
pkg = flag.String("package", "collate",
"the name of the package in which the generated file is to be included")
tables = flagStringSetAllowAll("tables", "collate", "collate,chars",
"comma-spearated list of tables to generate.")
exclude = flagStringSet("exclude", "zh2", "",
"comma-separated list of languages to exclude.")
include = flagStringSet("include", "", "",
"comma-separated list of languages to include. Include trumps exclude.")
// TODO: Not included: unihan gb2312han zhuyin big5han (for size reasons)
// TODO: Not included: traditional (buggy for Bengali)
types = flagStringSetAllowAll("types", "standard,phonebook,phonetic,reformed,pinyin,stroke", "",
"comma-separated list of types that should be included.")
)
// stringSet implements an ordered set based on a list. It implements flag.Value
// to allow a set to be specified as a comma-separated list.
type stringSet struct {
s []string
allowed *stringSet
dirty bool // needs compaction if true
all bool
allowAll bool
}
func flagStringSet(name, def, allowed, usage string) *stringSet {
ss := &stringSet{}
if allowed != "" {
usage += fmt.Sprintf(" (allowed values: any of %s)", allowed)
ss.allowed = &stringSet{}
failOnError(ss.allowed.Set(allowed))
}
ss.Set(def)
flag.Var(ss, name, usage)
return ss
}
func flagStringSetAllowAll(name, def, allowed, usage string) *stringSet {
ss := &stringSet{allowAll: true}
if allowed == "" {
flag.Var(ss, name, usage+fmt.Sprintf(` Use "all" to select all.`))
} else {
ss.allowed = &stringSet{}
failOnError(ss.allowed.Set(allowed))
flag.Var(ss, name, usage+fmt.Sprintf(` (allowed values: "all" or any of %s)`, allowed))
}
ss.Set(def)
return ss
}
func (ss stringSet) Len() int {
return len(ss.s)
}
func (ss stringSet) String() string {
return strings.Join(ss.s, ",")
}
func (ss *stringSet) Set(s string) error {
if ss.allowAll && s == "all" {
ss.s = nil
ss.all = true
return nil
}
ss.s = ss.s[:0]
for _, s := range strings.Split(s, ",") {
if s := strings.TrimSpace(s); s != "" {
if ss.allowed != nil && !ss.allowed.contains(s) {
return fmt.Errorf("unsupported value %q; must be one of %s", s, ss.allowed)
}
ss.add(s)
}
}
ss.compact()
return nil
}
func (ss *stringSet) add(s string) {
ss.s = append(ss.s, s)
ss.dirty = true
}
func (ss *stringSet) values() []string {
ss.compact()
return ss.s
}
func (ss *stringSet) contains(s string) bool {
if ss.all {
return true
}
for _, v := range ss.s {
if v == s {
return true
}
}
return false
}
func (ss *stringSet) compact() {
if !ss.dirty {
return
}
a := ss.s
sort.Strings(a)
k := 0
for i := 1; i < len(a); i++ {
if a[k] != a[i] {
a[k+1] = a[i]
k++
}
}
ss.s = a[:k+1]
ss.dirty = false
}
func skipLang(l string) bool {
if include.Len() > 0 {
return !include.contains(l)
}
return exclude.contains(l)
}
// altInclude returns a list of alternatives (for the LDML alt attribute)
// in order of preference. An empty string in this list indicates the
// default entry.
func altInclude() []string {
l := []string{}
if *short {
l = append(l, "short")
}
l = append(l, "")
// TODO: handle draft using cldr.SetDraftLevel
if *draft {
l = append(l, "proposed")
}
return l
}
func failOnError(e error) {
if e != nil {
log.Panic(e)
}
}
func openArchive() *zip.Reader {
f := gen.OpenCLDRCoreZip()
buffer, err := ioutil.ReadAll(f)
f.Close()
failOnError(err)
archive, err := zip.NewReader(bytes.NewReader(buffer), int64(len(buffer)))
failOnError(err)
return archive
}
// parseUCA parses a Default Unicode Collation Element Table of the format
// specified in https://www.unicode.org/reports/tr10/#File_Format.
// It returns the variable top.
func parseUCA(builder *build.Builder) {
var r io.ReadCloser
var err error
for _, f := range openArchive().File {
if strings.HasSuffix(f.Name, "allkeys_CLDR.txt") {
r, err = f.Open()
}
}
if r == nil {
log.Fatal("File allkeys_CLDR.txt not found in archive.")
}
failOnError(err)
defer r.Close()
scanner := bufio.NewScanner(r)
colelem := regexp.MustCompile(`\[([.*])([0-9A-F.]+)\]`)
for i := 1; scanner.Scan(); i++ {
line := scanner.Text()
if len(line) == 0 || line[0] == '#' {
continue
}
if line[0] == '@' {
// parse properties
switch {
case strings.HasPrefix(line[1:], "version "):
a := strings.Split(line[1:], " ")
if a[1] != gen.UnicodeVersion() {
log.Fatalf("incompatible version %s; want %s", a[1], gen.UnicodeVersion())
}
case strings.HasPrefix(line[1:], "backwards "):
log.Fatalf("%d: unsupported option backwards", i)
default:
log.Printf("%d: unknown option %s", i, line[1:])
}
} else {
// parse entries
part := strings.Split(line, " ; ")
if len(part) != 2 {
log.Fatalf("%d: production rule without ';': %v", i, line)
}
lhs := []rune{}
for _, v := range strings.Split(part[0], " ") {
if v == "" {
continue
}
lhs = append(lhs, rune(convHex(i, v)))
}
var n int
var vars []int
rhs := [][]int{}
for i, m := range colelem.FindAllStringSubmatch(part[1], -1) {
n += len(m[0])
elem := []int{}
for _, h := range strings.Split(m[2], ".") {
elem = append(elem, convHex(i, h))
}
if m[1] == "*" {
vars = append(vars, i)
}
rhs = append(rhs, elem)
}
if len(part[1]) < n+3 || part[1][n+1] != '#' {
log.Fatalf("%d: expected comment; found %s", i, part[1][n:])
}
if *test {
testInput.add(string(lhs))
}
failOnError(builder.Add(lhs, rhs, vars))
}
}
if scanner.Err() != nil {
log.Fatal(scanner.Err())
}
}
func convHex(line int, s string) int {
r, e := strconv.ParseInt(s, 16, 32)
if e != nil {
log.Fatalf("%d: %v", line, e)
}
return int(r)
}
var testInput = stringSet{}
var charRe = regexp.MustCompile(`&#x([0-9A-F]*);`)
var tagRe = regexp.MustCompile(`<([a-z_]*) */>`)
var mainLocales = []string{}
// charsets holds a list of exemplar characters per category.
type charSets map[string][]string
func (p charSets) fprint(w io.Writer) {
fmt.Fprintln(w, "[exN]string{")
for i, k := range []string{"", "contractions", "punctuation", "auxiliary", "currencySymbol", "index"} {
if set := p[k]; len(set) != 0 {
fmt.Fprintf(w, "\t\t%d: %q,\n", i, strings.Join(set, " "))
}
}
fmt.Fprintln(w, "\t},")
}
var localeChars = make(map[string]charSets)
const exemplarHeader = `
type exemplarType int
const (
exCharacters exemplarType = iota
exContractions
exPunctuation
exAuxiliary
exCurrency
exIndex
exN
)
`
func printExemplarCharacters(w io.Writer) {
fmt.Fprintln(w, exemplarHeader)
fmt.Fprintln(w, "var exemplarCharacters = map[string][exN]string{")
for _, loc := range mainLocales {
fmt.Fprintf(w, "\t%q: ", loc)
localeChars[loc].fprint(w)
}
fmt.Fprintln(w, "}")
}
func decodeCLDR(d *cldr.Decoder) *cldr.CLDR {
r := gen.OpenCLDRCoreZip()
data, err := d.DecodeZip(r)
failOnError(err)
return data
}
// parseMain parses XML files in the main directory of the CLDR core.zip file.
func parseMain() {
d := &cldr.Decoder{}
d.SetDirFilter("main")
d.SetSectionFilter("characters")
data := decodeCLDR(d)
for _, loc := range data.Locales() {
x := data.RawLDML(loc)
if skipLang(x.Identity.Language.Type) {
continue
}
if x.Characters != nil {
x, _ = data.LDML(loc)
loc = language.Make(loc).String()
for _, ec := range x.Characters.ExemplarCharacters {
if ec.Draft != "" {
continue
}
if _, ok := localeChars[loc]; !ok {
mainLocales = append(mainLocales, loc)
localeChars[loc] = make(charSets)
}
localeChars[loc][ec.Type] = parseCharacters(ec.Data())
}
}
}
}
func parseCharacters(chars string) []string {
parseSingle := func(s string) (r rune, tail string, escaped bool) {
if s[0] == '\\' {
return rune(s[1]), s[2:], true
}
r, sz := utf8.DecodeRuneInString(s)
return r, s[sz:], false
}
chars = strings.TrimSpace(chars)
if n := len(chars) - 1; chars[n] == ']' && chars[0] == '[' {
chars = chars[1:n]
}
list := []string{}
var r, last, end rune
for len(chars) > 0 {
if chars[0] == '{' { // character sequence
buf := []rune{}
for chars = chars[1:]; len(chars) > 0; {
r, chars, _ = parseSingle(chars)
if r == '}' {
break
}
if r == ' ' {
log.Fatalf("space not supported in sequence %q", chars)
}
buf = append(buf, r)
}
list = append(list, string(buf))
last = 0
} else { // single character
escaped := false
r, chars, escaped = parseSingle(chars)
if r != ' ' {
if r == '-' && !escaped {
if last == 0 {
log.Fatal("'-' should be preceded by a character")
}
end, chars, _ = parseSingle(chars)
for ; last <= end; last++ {
list = append(list, string(last))
}
last = 0
} else {
list = append(list, string(r))
last = r
}
}
}
}
return list
}
var fileRe = regexp.MustCompile(`.*/collation/(.*)\.xml`)
// typeMap translates legacy type keys to their BCP47 equivalent.
var typeMap = map[string]string{
"phonebook": "phonebk",
"traditional": "trad",
}
// parseCollation parses XML files in the collation directory of the CLDR core.zip file.
func parseCollation(b *build.Builder) {
d := &cldr.Decoder{}
d.SetDirFilter("collation")
data := decodeCLDR(d)
for _, loc := range data.Locales() {
x, err := data.LDML(loc)
failOnError(err)
if skipLang(x.Identity.Language.Type) {
continue
}
cs := x.Collations.Collation
sl := cldr.MakeSlice(&cs)
if len(types.s) == 0 {
sl.SelectAnyOf("type", x.Collations.Default())
} else if !types.all {
sl.SelectAnyOf("type", types.s...)
}
sl.SelectOnePerGroup("alt", altInclude())
for _, c := range cs {
id, err := language.Parse(loc)
if err != nil {
fmt.Fprintf(os.Stderr, "invalid locale: %q", err)
continue
}
// Support both old- and new-style defaults.
d := c.Type
if x.Collations.DefaultCollation == nil {
d = x.Collations.Default()
} else {
d = x.Collations.DefaultCollation.Data()
}
// We assume tables are being built either for search or collation,
// but not both. For search the default is always "search".
if d != c.Type && c.Type != "search" {
typ := c.Type
if len(c.Type) > 8 {
typ = typeMap[c.Type]
}
id, err = id.SetTypeForKey("co", typ)
failOnError(err)
}
t := b.Tailoring(id)
c.Process(processor{t})
}
}
}
type processor struct {
t *build.Tailoring
}
func (p processor) Reset(anchor string, before int) (err error) {
if before != 0 {
err = p.t.SetAnchorBefore(anchor)
} else {
err = p.t.SetAnchor(anchor)
}
failOnError(err)
return nil
}
func (p processor) Insert(level int, str, context, extend string) error {
str = context + str
if *test {
testInput.add(str)
}
// TODO: mimic bug in old maketables: remove.
err := p.t.Insert(colltab.Level(level-1), str, context+extend)
failOnError(err)
return nil
}
func (p processor) Index(id string) {
}
func testCollator(c *collate.Collator) {
c0 := collate.New(language.Und)
// iterator over all characters for all locales and check
// whether Key is equal.
buf := collate.Buffer{}
// Add all common and not too uncommon runes to the test set.
for i := rune(0); i < 0x30000; i++ {
testInput.add(string(i))
}
for i := rune(0xE0000); i < 0xF0000; i++ {
testInput.add(string(i))
}
for _, str := range testInput.values() {
k0 := c0.KeyFromString(&buf, str)
k := c.KeyFromString(&buf, str)
if !bytes.Equal(k0, k) {
failOnError(fmt.Errorf("test:%U: keys differ (%x vs %x)", []rune(str), k0, k))
}
buf.Reset()
}
fmt.Println("PASS")
}
func main() {
gen.Init()
b := build.NewBuilder()
parseUCA(b)
if tables.contains("chars") {
parseMain()
}
parseCollation(b)
c, err := b.Build()
failOnError(err)
if *test {
testCollator(collate.NewFromTable(c))
} else {
w := &bytes.Buffer{}
gen.WriteUnicodeVersion(w)
gen.WriteCLDRVersion(w)
if tables.contains("collate") {
_, err = b.Print(w)
failOnError(err)
}
if tables.contains("chars") {
printExemplarCharacters(w)
}
gen.WriteGoFile("tables.go", *pkg, w.Bytes())
}
}

239
vendor/golang.org/x/text/collate/option.go generated vendored Normal file
View File

@ -0,0 +1,239 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package collate
import (
"sort"
"golang.org/x/text/internal/colltab"
"golang.org/x/text/language"
"golang.org/x/text/unicode/norm"
)
// newCollator creates a new collator with default options configured.
func newCollator(t colltab.Weighter) *Collator {
// Initialize a collator with default options.
c := &Collator{
options: options{
ignore: [colltab.NumLevels]bool{
colltab.Quaternary: true,
colltab.Identity: true,
},
f: norm.NFD,
t: t,
},
}
// TODO: store vt in tags or remove.
c.variableTop = t.Top()
return c
}
// An Option is used to change the behavior of a Collator. Options override the
// settings passed through the locale identifier.
type Option struct {
priority int
f func(o *options)
}
type prioritizedOptions []Option
func (p prioritizedOptions) Len() int {
return len(p)
}
func (p prioritizedOptions) Swap(i, j int) {
p[i], p[j] = p[j], p[i]
}
func (p prioritizedOptions) Less(i, j int) bool {
return p[i].priority < p[j].priority
}
type options struct {
// ignore specifies which levels to ignore.
ignore [colltab.NumLevels]bool
// caseLevel is true if there is an additional level of case matching
// between the secondary and tertiary levels.
caseLevel bool
// backwards specifies the order of sorting at the secondary level.
// This option exists predominantly to support reverse sorting of accents in French.
backwards bool
// numeric specifies whether any sequence of decimal digits (category is Nd)
// is sorted at a primary level with its numeric value.
// For example, "A-21" < "A-123".
// This option is set by wrapping the main Weighter with NewNumericWeighter.
numeric bool
// alternate specifies an alternative handling of variables.
alternate alternateHandling
// variableTop is the largest primary value that is considered to be
// variable.
variableTop uint32
t colltab.Weighter
f norm.Form
}
func (o *options) setOptions(opts []Option) {
sort.Sort(prioritizedOptions(opts))
for _, x := range opts {
x.f(o)
}
}
// OptionsFromTag extracts the BCP47 collation options from the tag and
// configures a collator accordingly. These options are set before any other
// option.
func OptionsFromTag(t language.Tag) Option {
return Option{0, func(o *options) {
o.setFromTag(t)
}}
}
func (o *options) setFromTag(t language.Tag) {
o.caseLevel = ldmlBool(t, o.caseLevel, "kc")
o.backwards = ldmlBool(t, o.backwards, "kb")
o.numeric = ldmlBool(t, o.numeric, "kn")
// Extract settings from the BCP47 u extension.
switch t.TypeForKey("ks") { // strength
case "level1":
o.ignore[colltab.Secondary] = true
o.ignore[colltab.Tertiary] = true
case "level2":
o.ignore[colltab.Tertiary] = true
case "level3", "":
// The default.
case "level4":
o.ignore[colltab.Quaternary] = false
case "identic":
o.ignore[colltab.Quaternary] = false
o.ignore[colltab.Identity] = false
}
switch t.TypeForKey("ka") {
case "shifted":
o.alternate = altShifted
// The following two types are not official BCP47, but we support them to
// give access to this otherwise hidden functionality. The name blanked is
// derived from the LDML name blanked and posix reflects the main use of
// the shift-trimmed option.
case "blanked":
o.alternate = altBlanked
case "posix":
o.alternate = altShiftTrimmed
}
// TODO: caseFirst ("kf"), reorder ("kr"), and maybe variableTop ("vt").
// Not used:
// - normalization ("kk", not necessary for this implementation)
// - hiraganaQuatenary ("kh", obsolete)
}
func ldmlBool(t language.Tag, old bool, key string) bool {
switch t.TypeForKey(key) {
case "true":
return true
case "false":
return false
default:
return old
}
}
var (
// IgnoreCase sets case-insensitive comparison.
IgnoreCase Option = ignoreCase
ignoreCase = Option{3, ignoreCaseF}
// IgnoreDiacritics causes diacritical marks to be ignored. ("o" == "ö").
IgnoreDiacritics Option = ignoreDiacritics
ignoreDiacritics = Option{3, ignoreDiacriticsF}
// IgnoreWidth causes full-width characters to match their half-width
// equivalents.
IgnoreWidth Option = ignoreWidth
ignoreWidth = Option{2, ignoreWidthF}
// Loose sets the collator to ignore diacritics, case and width.
Loose Option = loose
loose = Option{4, looseF}
// Force ordering if strings are equivalent but not equal.
Force Option = force
force = Option{5, forceF}
// Numeric specifies that numbers should sort numerically ("2" < "12").
Numeric Option = numeric
numeric = Option{5, numericF}
)
func ignoreWidthF(o *options) {
o.ignore[colltab.Tertiary] = true
o.caseLevel = true
}
func ignoreDiacriticsF(o *options) {
o.ignore[colltab.Secondary] = true
}
func ignoreCaseF(o *options) {
o.ignore[colltab.Tertiary] = true
o.caseLevel = false
}
func looseF(o *options) {
ignoreWidthF(o)
ignoreDiacriticsF(o)
ignoreCaseF(o)
}
func forceF(o *options) {
o.ignore[colltab.Identity] = false
}
func numericF(o *options) { o.numeric = true }
// Reorder overrides the pre-defined ordering of scripts and character sets.
func Reorder(s ...string) Option {
// TODO: need fractional weights to implement this.
panic("TODO: implement")
}
// TODO: consider making these public again. These options cannot be fully
// specified in BCP47, so an API interface seems warranted. Still a higher-level
// interface would be nice (e.g. a POSIX option for enabling altShiftTrimmed)
// alternateHandling identifies the various ways in which variables are handled.
// A rune with a primary weight lower than the variable top is considered a
// variable.
// See https://www.unicode.org/reports/tr10/#Variable_Weighting for details.
type alternateHandling int
const (
// altNonIgnorable turns off special handling of variables.
altNonIgnorable alternateHandling = iota
// altBlanked sets variables and all subsequent primary ignorables to be
// ignorable at all levels. This is identical to removing all variables
// and subsequent primary ignorables from the input.
altBlanked
// altShifted sets variables to be ignorable for levels one through three and
// adds a fourth level based on the values of the ignored levels.
altShifted
// altShiftTrimmed is a slight variant of altShifted that is used to
// emulate POSIX.
altShiftTrimmed
)

81
vendor/golang.org/x/text/collate/sort.go generated vendored Normal file
View File

@ -0,0 +1,81 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package collate
import (
"bytes"
"sort"
)
const (
maxSortBuffer = 40960
maxSortEntries = 4096
)
type swapper interface {
Swap(i, j int)
}
type sorter struct {
buf *Buffer
keys [][]byte
src swapper
}
func (s *sorter) init(n int) {
if s.buf == nil {
s.buf = &Buffer{}
s.buf.init()
}
if cap(s.keys) < n {
s.keys = make([][]byte, n)
}
s.keys = s.keys[0:n]
}
func (s *sorter) sort(src swapper) {
s.src = src
sort.Sort(s)
}
func (s sorter) Len() int {
return len(s.keys)
}
func (s sorter) Less(i, j int) bool {
return bytes.Compare(s.keys[i], s.keys[j]) == -1
}
func (s sorter) Swap(i, j int) {
s.keys[i], s.keys[j] = s.keys[j], s.keys[i]
s.src.Swap(i, j)
}
// A Lister can be sorted by Collator's Sort method.
type Lister interface {
Len() int
Swap(i, j int)
// Bytes returns the bytes of the text at index i.
Bytes(i int) []byte
}
// Sort uses sort.Sort to sort the strings represented by x using the rules of c.
func (c *Collator) Sort(x Lister) {
n := x.Len()
c.sorter.init(n)
for i := 0; i < n; i++ {
c.sorter.keys[i] = c.Key(c.sorter.buf, x.Bytes(i))
}
c.sorter.sort(x)
}
// SortStrings uses sort.Sort to sort the strings in x using the rules of c.
func (c *Collator) SortStrings(x []string) {
c.sorter.init(len(x))
for i, s := range x {
c.sorter.keys[i] = c.KeyFromString(c.sorter.buf, s)
}
c.sorter.sort(sort.StringSlice(x))
}

73789
vendor/golang.org/x/text/collate/tables.go generated vendored Normal file

File diff suppressed because it is too large Load Diff