Update vendor for apimachinery

Signed-off-by: Alex Ellis (OpenFaaS Ltd) <alexellis2@gmail.com>
This commit is contained in:
Alex Ellis (OpenFaaS Ltd) 2020-09-18 12:54:54 +01:00 committed by Alex Ellis
parent 9e5eb84236
commit 94210cc7f1
15 changed files with 3147 additions and 0 deletions

17
Gopkg.lock generated
View File

@ -641,6 +641,14 @@
revision = "6eaf6f47437a6b4e2153a190160ef39a92c7eceb" revision = "6eaf6f47437a6b4e2153a190160ef39a92c7eceb"
version = "v1.23.0" version = "v1.23.0"
[[projects]]
digest = "1:2d1fbdc6777e5408cabeb02bf336305e724b925ff4546ded0fa8715a7267922a"
name = "gopkg.in/inf.v0"
packages = ["."]
pruneopts = "UT"
revision = "d2d2541c53f18d2a059457998ce2876cc8e67cbf"
version = "v0.9.1"
[[projects]] [[projects]]
digest = "1:d7f1bd887dc650737a421b872ca883059580e9f8314d601f88025df4f4802dce" digest = "1:d7f1bd887dc650737a421b872ca883059580e9f8314d601f88025df4f4802dce"
name = "gopkg.in/yaml.v2" name = "gopkg.in/yaml.v2"
@ -649,6 +657,14 @@
revision = "0b1645d91e851e735d3e23330303ce81f70adbe3" revision = "0b1645d91e851e735d3e23330303ce81f70adbe3"
version = "v2.3.0" version = "v2.3.0"
[[projects]]
digest = "1:565af689f3e3d45e9cf8be8ff888b46ac96abc031c77361ce7c5c1228b2df006"
name = "k8s.io/apimachinery"
packages = ["pkg/api/resource"]
pruneopts = "UT"
revision = "b63a0c883fbfc313249150449400788e5589ef23"
version = "v0.19.2"
[solve-meta] [solve-meta]
analyzer-name = "dep" analyzer-name = "dep"
analyzer-version = 1 analyzer-version = 1
@ -686,6 +702,7 @@
"github.com/vishvananda/netlink", "github.com/vishvananda/netlink",
"github.com/vishvananda/netns", "github.com/vishvananda/netns",
"golang.org/x/sys/unix", "golang.org/x/sys/unix",
"k8s.io/apimachinery/pkg/api/resource",
] ]
solver-name = "gps-cdcl" solver-name = "gps-cdcl"
solver-version = 1 solver-version = 1

28
vendor/gopkg.in/inf.v0/LICENSE generated vendored Normal file
View File

@ -0,0 +1,28 @@
Copyright (c) 2012 Péter Surányi. Portions Copyright (c) 2009 The Go
Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

615
vendor/gopkg.in/inf.v0/dec.go generated vendored Normal file
View File

@ -0,0 +1,615 @@
// Package inf (type inf.Dec) implements "infinite-precision" decimal
// arithmetic.
// "Infinite precision" describes two characteristics: practically unlimited
// precision for decimal number representation and no support for calculating
// with any specific fixed precision.
// (Although there is no practical limit on precision, inf.Dec can only
// represent finite decimals.)
//
// This package is currently in experimental stage and the API may change.
//
// This package does NOT support:
// - rounding to specific precisions (as opposed to specific decimal positions)
// - the notion of context (each rounding must be explicit)
// - NaN and Inf values, and distinguishing between positive and negative zero
// - conversions to and from float32/64 types
//
// Features considered for possible addition:
// + formatting options
// + Exp method
// + combined operations such as AddRound/MulAdd etc
// + exchanging data in decimal32/64/128 formats
//
package inf // import "gopkg.in/inf.v0"
// TODO:
// - avoid excessive deep copying (quo and rounders)
import (
"fmt"
"io"
"math/big"
"strings"
)
// A Dec represents a signed arbitrary-precision decimal.
// It is a combination of a sign, an arbitrary-precision integer coefficient
// value, and a signed fixed-precision exponent value.
// The sign and the coefficient value are handled together as a signed value
// and referred to as the unscaled value.
// (Positive and negative zero values are not distinguished.)
// Since the exponent is most commonly non-positive, it is handled in negated
// form and referred to as scale.
//
// The mathematical value of a Dec equals:
//
// unscaled * 10**(-scale)
//
// Note that different Dec representations may have equal mathematical values.
//
// unscaled scale String()
// -------------------------
// 0 0 "0"
// 0 2 "0.00"
// 0 -2 "0"
// 1 0 "1"
// 100 2 "1.00"
// 10 0 "10"
// 1 -1 "10"
//
// The zero value for a Dec represents the value 0 with scale 0.
//
// Operations are typically performed through the *Dec type.
// The semantics of the assignment operation "=" for "bare" Dec values is
// undefined and should not be relied on.
//
// Methods are typically of the form:
//
// func (z *Dec) Op(x, y *Dec) *Dec
//
// and implement operations z = x Op y with the result as receiver; if it
// is one of the operands it may be overwritten (and its memory reused).
// To enable chaining of operations, the result is also returned. Methods
// returning a result other than *Dec take one of the operands as the receiver.
//
// A "bare" Quo method (quotient / division operation) is not provided, as the
// result is not always a finite decimal and thus in general cannot be
// represented as a Dec.
// Instead, in the common case when rounding is (potentially) necessary,
// QuoRound should be used with a Scale and a Rounder.
// QuoExact or QuoRound with RoundExact can be used in the special cases when it
// is known that the result is always a finite decimal.
//
type Dec struct {
unscaled big.Int
scale Scale
}
// Scale represents the type used for the scale of a Dec.
type Scale int32
const scaleSize = 4 // bytes in a Scale value
// Scaler represents a method for obtaining the scale to use for the result of
// an operation on x and y.
type scaler interface {
Scale(x *Dec, y *Dec) Scale
}
var bigInt = [...]*big.Int{
big.NewInt(0), big.NewInt(1), big.NewInt(2), big.NewInt(3), big.NewInt(4),
big.NewInt(5), big.NewInt(6), big.NewInt(7), big.NewInt(8), big.NewInt(9),
big.NewInt(10),
}
var exp10cache [64]big.Int = func() [64]big.Int {
e10, e10i := [64]big.Int{}, bigInt[1]
for i := range e10 {
e10[i].Set(e10i)
e10i = new(big.Int).Mul(e10i, bigInt[10])
}
return e10
}()
// NewDec allocates and returns a new Dec set to the given int64 unscaled value
// and scale.
func NewDec(unscaled int64, scale Scale) *Dec {
return new(Dec).SetUnscaled(unscaled).SetScale(scale)
}
// NewDecBig allocates and returns a new Dec set to the given *big.Int unscaled
// value and scale.
func NewDecBig(unscaled *big.Int, scale Scale) *Dec {
return new(Dec).SetUnscaledBig(unscaled).SetScale(scale)
}
// Scale returns the scale of x.
func (x *Dec) Scale() Scale {
return x.scale
}
// Unscaled returns the unscaled value of x for u and true for ok when the
// unscaled value can be represented as int64; otherwise it returns an undefined
// int64 value for u and false for ok. Use x.UnscaledBig().Int64() to avoid
// checking the validity of the value when the check is known to be redundant.
func (x *Dec) Unscaled() (u int64, ok bool) {
u = x.unscaled.Int64()
var i big.Int
ok = i.SetInt64(u).Cmp(&x.unscaled) == 0
return
}
// UnscaledBig returns the unscaled value of x as *big.Int.
func (x *Dec) UnscaledBig() *big.Int {
return &x.unscaled
}
// SetScale sets the scale of z, with the unscaled value unchanged, and returns
// z.
// The mathematical value of the Dec changes as if it was multiplied by
// 10**(oldscale-scale).
func (z *Dec) SetScale(scale Scale) *Dec {
z.scale = scale
return z
}
// SetUnscaled sets the unscaled value of z, with the scale unchanged, and
// returns z.
func (z *Dec) SetUnscaled(unscaled int64) *Dec {
z.unscaled.SetInt64(unscaled)
return z
}
// SetUnscaledBig sets the unscaled value of z, with the scale unchanged, and
// returns z.
func (z *Dec) SetUnscaledBig(unscaled *big.Int) *Dec {
z.unscaled.Set(unscaled)
return z
}
// Set sets z to the value of x and returns z.
// It does nothing if z == x.
func (z *Dec) Set(x *Dec) *Dec {
if z != x {
z.SetUnscaledBig(x.UnscaledBig())
z.SetScale(x.Scale())
}
return z
}
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
//
func (x *Dec) Sign() int {
return x.UnscaledBig().Sign()
}
// Neg sets z to -x and returns z.
func (z *Dec) Neg(x *Dec) *Dec {
z.SetScale(x.Scale())
z.UnscaledBig().Neg(x.UnscaledBig())
return z
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
func (x *Dec) Cmp(y *Dec) int {
xx, yy := upscale(x, y)
return xx.UnscaledBig().Cmp(yy.UnscaledBig())
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Dec) Abs(x *Dec) *Dec {
z.SetScale(x.Scale())
z.UnscaledBig().Abs(x.UnscaledBig())
return z
}
// Add sets z to the sum x+y and returns z.
// The scale of z is the greater of the scales of x and y.
func (z *Dec) Add(x, y *Dec) *Dec {
xx, yy := upscale(x, y)
z.SetScale(xx.Scale())
z.UnscaledBig().Add(xx.UnscaledBig(), yy.UnscaledBig())
return z
}
// Sub sets z to the difference x-y and returns z.
// The scale of z is the greater of the scales of x and y.
func (z *Dec) Sub(x, y *Dec) *Dec {
xx, yy := upscale(x, y)
z.SetScale(xx.Scale())
z.UnscaledBig().Sub(xx.UnscaledBig(), yy.UnscaledBig())
return z
}
// Mul sets z to the product x*y and returns z.
// The scale of z is the sum of the scales of x and y.
func (z *Dec) Mul(x, y *Dec) *Dec {
z.SetScale(x.Scale() + y.Scale())
z.UnscaledBig().Mul(x.UnscaledBig(), y.UnscaledBig())
return z
}
// Round sets z to the value of x rounded to Scale s using Rounder r, and
// returns z.
func (z *Dec) Round(x *Dec, s Scale, r Rounder) *Dec {
return z.QuoRound(x, NewDec(1, 0), s, r)
}
// QuoRound sets z to the quotient x/y, rounded using the given Rounder to the
// specified scale.
//
// If the rounder is RoundExact but the result can not be expressed exactly at
// the specified scale, QuoRound returns nil, and the value of z is undefined.
//
// There is no corresponding Div method; the equivalent can be achieved through
// the choice of Rounder used.
//
func (z *Dec) QuoRound(x, y *Dec, s Scale, r Rounder) *Dec {
return z.quo(x, y, sclr{s}, r)
}
func (z *Dec) quo(x, y *Dec, s scaler, r Rounder) *Dec {
scl := s.Scale(x, y)
var zzz *Dec
if r.UseRemainder() {
zz, rA, rB := new(Dec).quoRem(x, y, scl, true, new(big.Int), new(big.Int))
zzz = r.Round(new(Dec), zz, rA, rB)
} else {
zz, _, _ := new(Dec).quoRem(x, y, scl, false, nil, nil)
zzz = r.Round(new(Dec), zz, nil, nil)
}
if zzz == nil {
return nil
}
return z.Set(zzz)
}
// QuoExact sets z to the quotient x/y and returns z when x/y is a finite
// decimal. Otherwise it returns nil and the value of z is undefined.
//
// The scale of a non-nil result is "x.Scale() - y.Scale()" or greater; it is
// calculated so that the remainder will be zero whenever x/y is a finite
// decimal.
func (z *Dec) QuoExact(x, y *Dec) *Dec {
return z.quo(x, y, scaleQuoExact{}, RoundExact)
}
// quoRem sets z to the quotient x/y with the scale s, and if useRem is true,
// it sets remNum and remDen to the numerator and denominator of the remainder.
// It returns z, remNum and remDen.
//
// The remainder is normalized to the range -1 < r < 1 to simplify rounding;
// that is, the results satisfy the following equation:
//
// x / y = z + (remNum/remDen) * 10**(-z.Scale())
//
// See Rounder for more details about rounding.
//
func (z *Dec) quoRem(x, y *Dec, s Scale, useRem bool,
remNum, remDen *big.Int) (*Dec, *big.Int, *big.Int) {
// difference (required adjustment) compared to "canonical" result scale
shift := s - (x.Scale() - y.Scale())
// pointers to adjusted unscaled dividend and divisor
var ix, iy *big.Int
switch {
case shift > 0:
// increased scale: decimal-shift dividend left
ix = new(big.Int).Mul(x.UnscaledBig(), exp10(shift))
iy = y.UnscaledBig()
case shift < 0:
// decreased scale: decimal-shift divisor left
ix = x.UnscaledBig()
iy = new(big.Int).Mul(y.UnscaledBig(), exp10(-shift))
default:
ix = x.UnscaledBig()
iy = y.UnscaledBig()
}
// save a copy of iy in case it to be overwritten with the result
iy2 := iy
if iy == z.UnscaledBig() {
iy2 = new(big.Int).Set(iy)
}
// set scale
z.SetScale(s)
// set unscaled
if useRem {
// Int division
_, intr := z.UnscaledBig().QuoRem(ix, iy, new(big.Int))
// set remainder
remNum.Set(intr)
remDen.Set(iy2)
} else {
z.UnscaledBig().Quo(ix, iy)
}
return z, remNum, remDen
}
type sclr struct{ s Scale }
func (s sclr) Scale(x, y *Dec) Scale {
return s.s
}
type scaleQuoExact struct{}
func (sqe scaleQuoExact) Scale(x, y *Dec) Scale {
rem := new(big.Rat).SetFrac(x.UnscaledBig(), y.UnscaledBig())
f2, f5 := factor2(rem.Denom()), factor(rem.Denom(), bigInt[5])
var f10 Scale
if f2 > f5 {
f10 = Scale(f2)
} else {
f10 = Scale(f5)
}
return x.Scale() - y.Scale() + f10
}
func factor(n *big.Int, p *big.Int) int {
// could be improved for large factors
d, f := n, 0
for {
dd, dm := new(big.Int).DivMod(d, p, new(big.Int))
if dm.Sign() == 0 {
f++
d = dd
} else {
break
}
}
return f
}
func factor2(n *big.Int) int {
// could be improved for large factors
f := 0
for ; n.Bit(f) == 0; f++ {
}
return f
}
func upscale(a, b *Dec) (*Dec, *Dec) {
if a.Scale() == b.Scale() {
return a, b
}
if a.Scale() > b.Scale() {
bb := b.rescale(a.Scale())
return a, bb
}
aa := a.rescale(b.Scale())
return aa, b
}
func exp10(x Scale) *big.Int {
if int(x) < len(exp10cache) {
return &exp10cache[int(x)]
}
return new(big.Int).Exp(bigInt[10], big.NewInt(int64(x)), nil)
}
func (x *Dec) rescale(newScale Scale) *Dec {
shift := newScale - x.Scale()
switch {
case shift < 0:
e := exp10(-shift)
return NewDecBig(new(big.Int).Quo(x.UnscaledBig(), e), newScale)
case shift > 0:
e := exp10(shift)
return NewDecBig(new(big.Int).Mul(x.UnscaledBig(), e), newScale)
}
return x
}
var zeros = []byte("00000000000000000000000000000000" +
"00000000000000000000000000000000")
var lzeros = Scale(len(zeros))
func appendZeros(s []byte, n Scale) []byte {
for i := Scale(0); i < n; i += lzeros {
if n > i+lzeros {
s = append(s, zeros...)
} else {
s = append(s, zeros[0:n-i]...)
}
}
return s
}
func (x *Dec) String() string {
if x == nil {
return "<nil>"
}
scale := x.Scale()
s := []byte(x.UnscaledBig().String())
if scale <= 0 {
if scale != 0 && x.unscaled.Sign() != 0 {
s = appendZeros(s, -scale)
}
return string(s)
}
negbit := Scale(-((x.Sign() - 1) / 2))
// scale > 0
lens := Scale(len(s))
if lens-negbit <= scale {
ss := make([]byte, 0, scale+2)
if negbit == 1 {
ss = append(ss, '-')
}
ss = append(ss, '0', '.')
ss = appendZeros(ss, scale-lens+negbit)
ss = append(ss, s[negbit:]...)
return string(ss)
}
// lens > scale
ss := make([]byte, 0, lens+1)
ss = append(ss, s[:lens-scale]...)
ss = append(ss, '.')
ss = append(ss, s[lens-scale:]...)
return string(ss)
}
// Format is a support routine for fmt.Formatter. It accepts the decimal
// formats 'd' and 'f', and handles both equivalently.
// Width, precision, flags and bases 2, 8, 16 are not supported.
func (x *Dec) Format(s fmt.State, ch rune) {
if ch != 'd' && ch != 'f' && ch != 'v' && ch != 's' {
fmt.Fprintf(s, "%%!%c(dec.Dec=%s)", ch, x.String())
return
}
fmt.Fprintf(s, x.String())
}
func (z *Dec) scan(r io.RuneScanner) (*Dec, error) {
unscaled := make([]byte, 0, 256) // collects chars of unscaled as bytes
dp, dg := -1, -1 // indexes of decimal point, first digit
loop:
for {
ch, _, err := r.ReadRune()
if err == io.EOF {
break loop
}
if err != nil {
return nil, err
}
switch {
case ch == '+' || ch == '-':
if len(unscaled) > 0 || dp >= 0 { // must be first character
r.UnreadRune()
break loop
}
case ch == '.':
if dp >= 0 {
r.UnreadRune()
break loop
}
dp = len(unscaled)
continue // don't add to unscaled
case ch >= '0' && ch <= '9':
if dg == -1 {
dg = len(unscaled)
}
default:
r.UnreadRune()
break loop
}
unscaled = append(unscaled, byte(ch))
}
if dg == -1 {
return nil, fmt.Errorf("no digits read")
}
if dp >= 0 {
z.SetScale(Scale(len(unscaled) - dp))
} else {
z.SetScale(0)
}
_, ok := z.UnscaledBig().SetString(string(unscaled), 10)
if !ok {
return nil, fmt.Errorf("invalid decimal: %s", string(unscaled))
}
return z, nil
}
// SetString sets z to the value of s, interpreted as a decimal (base 10),
// and returns z and a boolean indicating success. The scale of z is the
// number of digits after the decimal point (including any trailing 0s),
// or 0 if there is no decimal point. If SetString fails, the value of z
// is undefined but the returned value is nil.
func (z *Dec) SetString(s string) (*Dec, bool) {
r := strings.NewReader(s)
_, err := z.scan(r)
if err != nil {
return nil, false
}
_, _, err = r.ReadRune()
if err != io.EOF {
return nil, false
}
// err == io.EOF => scan consumed all of s
return z, true
}
// Scan is a support routine for fmt.Scanner; it sets z to the value of
// the scanned number. It accepts the decimal formats 'd' and 'f', and
// handles both equivalently. Bases 2, 8, 16 are not supported.
// The scale of z is the number of digits after the decimal point
// (including any trailing 0s), or 0 if there is no decimal point.
func (z *Dec) Scan(s fmt.ScanState, ch rune) error {
if ch != 'd' && ch != 'f' && ch != 's' && ch != 'v' {
return fmt.Errorf("Dec.Scan: invalid verb '%c'", ch)
}
s.SkipSpace()
_, err := z.scan(s)
return err
}
// Gob encoding version
const decGobVersion byte = 1
func scaleBytes(s Scale) []byte {
buf := make([]byte, scaleSize)
i := scaleSize
for j := 0; j < scaleSize; j++ {
i--
buf[i] = byte(s)
s >>= 8
}
return buf
}
func scale(b []byte) (s Scale) {
for j := 0; j < scaleSize; j++ {
s <<= 8
s |= Scale(b[j])
}
return
}
// GobEncode implements the gob.GobEncoder interface.
func (x *Dec) GobEncode() ([]byte, error) {
buf, err := x.UnscaledBig().GobEncode()
if err != nil {
return nil, err
}
buf = append(append(buf, scaleBytes(x.Scale())...), decGobVersion)
return buf, nil
}
// GobDecode implements the gob.GobDecoder interface.
func (z *Dec) GobDecode(buf []byte) error {
if len(buf) == 0 {
return fmt.Errorf("Dec.GobDecode: no data")
}
b := buf[len(buf)-1]
if b != decGobVersion {
return fmt.Errorf("Dec.GobDecode: encoding version %d not supported", b)
}
l := len(buf) - scaleSize - 1
err := z.UnscaledBig().GobDecode(buf[:l])
if err != nil {
return err
}
z.SetScale(scale(buf[l : l+scaleSize]))
return nil
}
// MarshalText implements the encoding.TextMarshaler interface.
func (x *Dec) MarshalText() ([]byte, error) {
return []byte(x.String()), nil
}
// UnmarshalText implements the encoding.TextUnmarshaler interface.
func (z *Dec) UnmarshalText(data []byte) error {
_, ok := z.SetString(string(data))
if !ok {
return fmt.Errorf("invalid inf.Dec")
}
return nil
}

145
vendor/gopkg.in/inf.v0/rounder.go generated vendored Normal file
View File

@ -0,0 +1,145 @@
package inf
import (
"math/big"
)
// Rounder represents a method for rounding the (possibly infinite decimal)
// result of a division to a finite Dec. It is used by Dec.Round() and
// Dec.Quo().
//
// See the Example for results of using each Rounder with some sample values.
//
type Rounder rounder
// See http://speleotrove.com/decimal/damodel.html#refround for more detailed
// definitions of these rounding modes.
var (
RoundDown Rounder // towards 0
RoundUp Rounder // away from 0
RoundFloor Rounder // towards -infinity
RoundCeil Rounder // towards +infinity
RoundHalfDown Rounder // to nearest; towards 0 if same distance
RoundHalfUp Rounder // to nearest; away from 0 if same distance
RoundHalfEven Rounder // to nearest; even last digit if same distance
)
// RoundExact is to be used in the case when rounding is not necessary.
// When used with Quo or Round, it returns the result verbatim when it can be
// expressed exactly with the given precision, and it returns nil otherwise.
// QuoExact is a shorthand for using Quo with RoundExact.
var RoundExact Rounder
type rounder interface {
// When UseRemainder() returns true, the Round() method is passed the
// remainder of the division, expressed as the numerator and denominator of
// a rational.
UseRemainder() bool
// Round sets the rounded value of a quotient to z, and returns z.
// quo is rounded down (truncated towards zero) to the scale obtained from
// the Scaler in Quo().
//
// When the remainder is not used, remNum and remDen are nil.
// When used, the remainder is normalized between -1 and 1; that is:
//
// -|remDen| < remNum < |remDen|
//
// remDen has the same sign as y, and remNum is zero or has the same sign
// as x.
Round(z, quo *Dec, remNum, remDen *big.Int) *Dec
}
type rndr struct {
useRem bool
round func(z, quo *Dec, remNum, remDen *big.Int) *Dec
}
func (r rndr) UseRemainder() bool {
return r.useRem
}
func (r rndr) Round(z, quo *Dec, remNum, remDen *big.Int) *Dec {
return r.round(z, quo, remNum, remDen)
}
var intSign = []*big.Int{big.NewInt(-1), big.NewInt(0), big.NewInt(1)}
func roundHalf(f func(c int, odd uint) (roundUp bool)) func(z, q *Dec, rA, rB *big.Int) *Dec {
return func(z, q *Dec, rA, rB *big.Int) *Dec {
z.Set(q)
brA, brB := rA.BitLen(), rB.BitLen()
if brA < brB-1 {
// brA < brB-1 => |rA| < |rB/2|
return z
}
roundUp := false
srA, srB := rA.Sign(), rB.Sign()
s := srA * srB
if brA == brB-1 {
rA2 := new(big.Int).Lsh(rA, 1)
if s < 0 {
rA2.Neg(rA2)
}
roundUp = f(rA2.Cmp(rB)*srB, z.UnscaledBig().Bit(0))
} else {
// brA > brB-1 => |rA| > |rB/2|
roundUp = true
}
if roundUp {
z.UnscaledBig().Add(z.UnscaledBig(), intSign[s+1])
}
return z
}
}
func init() {
RoundExact = rndr{true,
func(z, q *Dec, rA, rB *big.Int) *Dec {
if rA.Sign() != 0 {
return nil
}
return z.Set(q)
}}
RoundDown = rndr{false,
func(z, q *Dec, rA, rB *big.Int) *Dec {
return z.Set(q)
}}
RoundUp = rndr{true,
func(z, q *Dec, rA, rB *big.Int) *Dec {
z.Set(q)
if rA.Sign() != 0 {
z.UnscaledBig().Add(z.UnscaledBig(), intSign[rA.Sign()*rB.Sign()+1])
}
return z
}}
RoundFloor = rndr{true,
func(z, q *Dec, rA, rB *big.Int) *Dec {
z.Set(q)
if rA.Sign()*rB.Sign() < 0 {
z.UnscaledBig().Add(z.UnscaledBig(), intSign[0])
}
return z
}}
RoundCeil = rndr{true,
func(z, q *Dec, rA, rB *big.Int) *Dec {
z.Set(q)
if rA.Sign()*rB.Sign() > 0 {
z.UnscaledBig().Add(z.UnscaledBig(), intSign[2])
}
return z
}}
RoundHalfDown = rndr{true, roundHalf(
func(c int, odd uint) bool {
return c > 0
})}
RoundHalfUp = rndr{true, roundHalf(
func(c int, odd uint) bool {
return c >= 0
})}
RoundHalfEven = rndr{true, roundHalf(
func(c int, odd uint) bool {
return c > 0 || c == 0 && odd == 1
})}
}

202
vendor/k8s.io/apimachinery/LICENSE generated vendored Normal file
View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

13
vendor/k8s.io/apimachinery/pkg/api/resource/OWNERS generated vendored Normal file
View File

@ -0,0 +1,13 @@
# See the OWNERS docs at https://go.k8s.io/owners
reviewers:
- thockin
- lavalamp
- smarterclayton
- wojtek-t
- derekwaynecarr
- mikedanese
- saad-ali
- janetkuo
- xiang90
- mbohlool

299
vendor/k8s.io/apimachinery/pkg/api/resource/amount.go generated vendored Normal file
View File

@ -0,0 +1,299 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math/big"
"strconv"
inf "gopkg.in/inf.v0"
)
// Scale is used for getting and setting the base-10 scaled value.
// Base-2 scales are omitted for mathematical simplicity.
// See Quantity.ScaledValue for more details.
type Scale int32
// infScale adapts a Scale value to an inf.Scale value.
func (s Scale) infScale() inf.Scale {
return inf.Scale(-s) // inf.Scale is upside-down
}
const (
Nano Scale = -9
Micro Scale = -6
Milli Scale = -3
Kilo Scale = 3
Mega Scale = 6
Giga Scale = 9
Tera Scale = 12
Peta Scale = 15
Exa Scale = 18
)
var (
Zero = int64Amount{}
// Used by quantity strings - treat as read only
zeroBytes = []byte("0")
)
// int64Amount represents a fixed precision numerator and arbitrary scale exponent. It is faster
// than operations on inf.Dec for values that can be represented as int64.
// +k8s:openapi-gen=true
type int64Amount struct {
value int64
scale Scale
}
// Sign returns 0 if the value is zero, -1 if it is less than 0, or 1 if it is greater than 0.
func (a int64Amount) Sign() int {
switch {
case a.value == 0:
return 0
case a.value > 0:
return 1
default:
return -1
}
}
// AsInt64 returns the current amount as an int64 at scale 0, or false if the value cannot be
// represented in an int64 OR would result in a loss of precision. This method is intended as
// an optimization to avoid calling AsDec.
func (a int64Amount) AsInt64() (int64, bool) {
if a.scale == 0 {
return a.value, true
}
if a.scale < 0 {
// TODO: attempt to reduce factors, although it is assumed that factors are reduced prior
// to the int64Amount being created.
return 0, false
}
return positiveScaleInt64(a.value, a.scale)
}
// AsScaledInt64 returns an int64 representing the value of this amount at the specified scale,
// rounding up, or false if that would result in overflow. (1e20).AsScaledInt64(1) would result
// in overflow because 1e19 is not representable as an int64. Note that setting a scale larger
// than the current value may result in loss of precision - i.e. (1e-6).AsScaledInt64(0) would
// return 1, because 0.000001 is rounded up to 1.
func (a int64Amount) AsScaledInt64(scale Scale) (result int64, ok bool) {
if a.scale < scale {
result, _ = negativeScaleInt64(a.value, scale-a.scale)
return result, true
}
return positiveScaleInt64(a.value, a.scale-scale)
}
// AsDec returns an inf.Dec representation of this value.
func (a int64Amount) AsDec() *inf.Dec {
var base inf.Dec
base.SetUnscaled(a.value)
base.SetScale(inf.Scale(-a.scale))
return &base
}
// Cmp returns 0 if a and b are equal, 1 if a is greater than b, or -1 if a is less than b.
func (a int64Amount) Cmp(b int64Amount) int {
switch {
case a.scale == b.scale:
// compare only the unscaled portion
case a.scale > b.scale:
result, remainder, exact := divideByScaleInt64(b.value, a.scale-b.scale)
if !exact {
return a.AsDec().Cmp(b.AsDec())
}
if result == a.value {
switch {
case remainder == 0:
return 0
case remainder > 0:
return -1
default:
return 1
}
}
b.value = result
default:
result, remainder, exact := divideByScaleInt64(a.value, b.scale-a.scale)
if !exact {
return a.AsDec().Cmp(b.AsDec())
}
if result == b.value {
switch {
case remainder == 0:
return 0
case remainder > 0:
return 1
default:
return -1
}
}
a.value = result
}
switch {
case a.value == b.value:
return 0
case a.value < b.value:
return -1
default:
return 1
}
}
// Add adds two int64Amounts together, matching scales. It will return false and not mutate
// a if overflow or underflow would result.
func (a *int64Amount) Add(b int64Amount) bool {
switch {
case b.value == 0:
return true
case a.value == 0:
a.value = b.value
a.scale = b.scale
return true
case a.scale == b.scale:
c, ok := int64Add(a.value, b.value)
if !ok {
return false
}
a.value = c
case a.scale > b.scale:
c, ok := positiveScaleInt64(a.value, a.scale-b.scale)
if !ok {
return false
}
c, ok = int64Add(c, b.value)
if !ok {
return false
}
a.scale = b.scale
a.value = c
default:
c, ok := positiveScaleInt64(b.value, b.scale-a.scale)
if !ok {
return false
}
c, ok = int64Add(a.value, c)
if !ok {
return false
}
a.value = c
}
return true
}
// Sub removes the value of b from the current amount, or returns false if underflow would result.
func (a *int64Amount) Sub(b int64Amount) bool {
return a.Add(int64Amount{value: -b.value, scale: b.scale})
}
// AsScale adjusts this amount to set a minimum scale, rounding up, and returns true iff no precision
// was lost. (1.1e5).AsScale(5) would return 1.1e5, but (1.1e5).AsScale(6) would return 1e6.
func (a int64Amount) AsScale(scale Scale) (int64Amount, bool) {
if a.scale >= scale {
return a, true
}
result, exact := negativeScaleInt64(a.value, scale-a.scale)
return int64Amount{value: result, scale: scale}, exact
}
// AsCanonicalBytes accepts a buffer to write the base-10 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. The value is adjusted
// until the exponent is a multiple of 3 - i.e. 1.1e5 would return "110", 3.
func (a int64Amount) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
mantissa := a.value
exponent = int32(a.scale)
amount, times := removeInt64Factors(mantissa, 10)
exponent += int32(times)
// make sure exponent is a multiple of 3
var ok bool
switch exponent % 3 {
case 1, -2:
amount, ok = int64MultiplyScale10(amount)
if !ok {
return infDecAmount{a.AsDec()}.AsCanonicalBytes(out)
}
exponent = exponent - 1
case 2, -1:
amount, ok = int64MultiplyScale100(amount)
if !ok {
return infDecAmount{a.AsDec()}.AsCanonicalBytes(out)
}
exponent = exponent - 2
}
return strconv.AppendInt(out, amount, 10), exponent
}
// AsCanonicalBase1024Bytes accepts a buffer to write the base-1024 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. 2048 is 2 * 1024 ^ 1 and would
// return []byte("2048"), 1.
func (a int64Amount) AsCanonicalBase1024Bytes(out []byte) (result []byte, exponent int32) {
value, ok := a.AsScaledInt64(0)
if !ok {
return infDecAmount{a.AsDec()}.AsCanonicalBase1024Bytes(out)
}
amount, exponent := removeInt64Factors(value, 1024)
return strconv.AppendInt(out, amount, 10), exponent
}
// infDecAmount implements common operations over an inf.Dec that are specific to the quantity
// representation.
type infDecAmount struct {
*inf.Dec
}
// AsScale adjusts this amount to set a minimum scale, rounding up, and returns true iff no precision
// was lost. (1.1e5).AsScale(5) would return 1.1e5, but (1.1e5).AsScale(6) would return 1e6.
func (a infDecAmount) AsScale(scale Scale) (infDecAmount, bool) {
tmp := &inf.Dec{}
tmp.Round(a.Dec, scale.infScale(), inf.RoundUp)
return infDecAmount{tmp}, tmp.Cmp(a.Dec) == 0
}
// AsCanonicalBytes accepts a buffer to write the base-10 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. The value is adjusted
// until the exponent is a multiple of 3 - i.e. 1.1e5 would return "110", 3.
func (a infDecAmount) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
mantissa := a.Dec.UnscaledBig()
exponent = int32(-a.Dec.Scale())
amount := big.NewInt(0).Set(mantissa)
// move all factors of 10 into the exponent for easy reasoning
amount, times := removeBigIntFactors(amount, bigTen)
exponent += times
// make sure exponent is a multiple of 3
for exponent%3 != 0 {
amount.Mul(amount, bigTen)
exponent--
}
return append(out, amount.String()...), exponent
}
// AsCanonicalBase1024Bytes accepts a buffer to write the base-1024 string value of this field to, and returns
// either that buffer or a larger buffer and the current exponent of the value. 2048 is 2 * 1024 ^ 1 and would
// return []byte("2048"), 1.
func (a infDecAmount) AsCanonicalBase1024Bytes(out []byte) (result []byte, exponent int32) {
tmp := &inf.Dec{}
tmp.Round(a.Dec, 0, inf.RoundUp)
amount, exponent := removeBigIntFactors(tmp.UnscaledBig(), big1024)
return append(out, amount.String()...), exponent
}

View File

@ -0,0 +1,89 @@
/*
Copyright The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Code generated by protoc-gen-gogo. DO NOT EDIT.
// source: k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/api/resource/generated.proto
package resource
import (
fmt "fmt"
math "math"
proto "github.com/gogo/protobuf/proto"
)
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.GoGoProtoPackageIsVersion3 // please upgrade the proto package
func (m *Quantity) Reset() { *m = Quantity{} }
func (*Quantity) ProtoMessage() {}
func (*Quantity) Descriptor() ([]byte, []int) {
return fileDescriptor_612bba87bd70906c, []int{0}
}
func (m *Quantity) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Quantity.Unmarshal(m, b)
}
func (m *Quantity) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Quantity.Marshal(b, m, deterministic)
}
func (m *Quantity) XXX_Merge(src proto.Message) {
xxx_messageInfo_Quantity.Merge(m, src)
}
func (m *Quantity) XXX_Size() int {
return xxx_messageInfo_Quantity.Size(m)
}
func (m *Quantity) XXX_DiscardUnknown() {
xxx_messageInfo_Quantity.DiscardUnknown(m)
}
var xxx_messageInfo_Quantity proto.InternalMessageInfo
func init() {
proto.RegisterType((*Quantity)(nil), "k8s.io.apimachinery.pkg.api.resource.Quantity")
}
func init() {
proto.RegisterFile("k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/api/resource/generated.proto", fileDescriptor_612bba87bd70906c)
}
var fileDescriptor_612bba87bd70906c = []byte{
// 237 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0x4c, 0x8e, 0xb1, 0x4e, 0xc3, 0x30,
0x10, 0x40, 0xcf, 0x0b, 0x2a, 0x19, 0x2b, 0x84, 0x10, 0xc3, 0xa5, 0x42, 0x0c, 0x2c, 0xd8, 0x6b,
0xc5, 0xc8, 0xce, 0x00, 0x23, 0x5b, 0x92, 0x1e, 0xae, 0x15, 0xd5, 0x8e, 0x2e, 0x36, 0x52, 0xb7,
0x8e, 0x8c, 0x1d, 0x19, 0x9b, 0xbf, 0xe9, 0xd8, 0xb1, 0x03, 0x03, 0x31, 0x3f, 0x82, 0xea, 0x36,
0x52, 0xb7, 0x7b, 0xef, 0xf4, 0x4e, 0x97, 0xbd, 0xd4, 0xd3, 0x56, 0x1a, 0xa7, 0xea, 0x50, 0x12,
0x5b, 0xf2, 0xd4, 0xaa, 0x4f, 0xb2, 0x33, 0xc7, 0xea, 0xb4, 0x28, 0x1a, 0xb3, 0x28, 0xaa, 0xb9,
0xb1, 0xc4, 0x4b, 0xd5, 0xd4, 0xfa, 0x20, 0x14, 0x53, 0xeb, 0x02, 0x57, 0xa4, 0x34, 0x59, 0xe2,
0xc2, 0xd3, 0x4c, 0x36, 0xec, 0xbc, 0x1b, 0xdf, 0x1f, 0x2b, 0x79, 0x5e, 0xc9, 0xa6, 0xd6, 0x07,
0x21, 0x87, 0xea, 0xf6, 0x51, 0x1b, 0x3f, 0x0f, 0xa5, 0xac, 0xdc, 0x42, 0x69, 0xa7, 0x9d, 0x4a,
0x71, 0x19, 0x3e, 0x12, 0x25, 0x48, 0xd3, 0xf1, 0xe8, 0xdd, 0x34, 0x1b, 0xbd, 0x86, 0xc2, 0x7a,
0xe3, 0x97, 0xe3, 0xeb, 0xec, 0xa2, 0xf5, 0x6c, 0xac, 0xbe, 0x11, 0x13, 0xf1, 0x70, 0xf9, 0x76,
0xa2, 0xa7, 0xab, 0xef, 0x4d, 0x0e, 0x5f, 0x5d, 0x0e, 0xeb, 0x2e, 0x87, 0x4d, 0x97, 0xc3, 0xea,
0x67, 0x02, 0xcf, 0x72, 0xdb, 0x23, 0xec, 0x7a, 0x84, 0x7d, 0x8f, 0xb0, 0x8a, 0x28, 0xb6, 0x11,
0xc5, 0x2e, 0xa2, 0xd8, 0x47, 0x14, 0xbf, 0x11, 0xc5, 0xfa, 0x0f, 0xe1, 0x7d, 0x34, 0x3c, 0xf6,
0x1f, 0x00, 0x00, 0xff, 0xff, 0x3c, 0x08, 0x88, 0x49, 0x0e, 0x01, 0x00, 0x00,
}

View File

@ -0,0 +1,88 @@
/*
Copyright The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// This file was autogenerated by go-to-protobuf. Do not edit it manually!
syntax = 'proto2';
package k8s.io.apimachinery.pkg.api.resource;
// Package-wide variables from generator "generated".
option go_package = "resource";
// Quantity is a fixed-point representation of a number.
// It provides convenient marshaling/unmarshaling in JSON and YAML,
// in addition to String() and AsInt64() accessors.
//
// The serialization format is:
//
// <quantity> ::= <signedNumber><suffix>
// (Note that <suffix> may be empty, from the "" case in <decimalSI>.)
// <digit> ::= 0 | 1 | ... | 9
// <digits> ::= <digit> | <digit><digits>
// <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
// <sign> ::= "+" | "-"
// <signedNumber> ::= <number> | <sign><number>
// <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI>
// <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei
// (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
// <decimalSI> ::= m | "" | k | M | G | T | P | E
// (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
//
// No matter which of the three exponent forms is used, no quantity may represent
// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
// places. Numbers larger or more precise will be capped or rounded up.
// (E.g.: 0.1m will rounded up to 1m.)
// This may be extended in the future if we require larger or smaller quantities.
//
// When a Quantity is parsed from a string, it will remember the type of suffix
// it had, and will use the same type again when it is serialized.
//
// Before serializing, Quantity will be put in "canonical form".
// This means that Exponent/suffix will be adjusted up or down (with a
// corresponding increase or decrease in Mantissa) such that:
// a. No precision is lost
// b. No fractional digits will be emitted
// c. The exponent (or suffix) is as large as possible.
// The sign will be omitted unless the number is negative.
//
// Examples:
// 1.5 will be serialized as "1500m"
// 1.5Gi will be serialized as "1536Mi"
//
// Note that the quantity will NEVER be internally represented by a
// floating point number. That is the whole point of this exercise.
//
// Non-canonical values will still parse as long as they are well formed,
// but will be re-emitted in their canonical form. (So always use canonical
// form, or don't diff.)
//
// This format is intended to make it difficult to use these numbers without
// writing some sort of special handling code in the hopes that that will
// cause implementors to also use a fixed point implementation.
//
// +protobuf=true
// +protobuf.embed=string
// +protobuf.options.marshal=false
// +protobuf.options.(gogoproto.goproto_stringer)=false
// +k8s:deepcopy-gen=true
// +k8s:openapi-gen=true
message Quantity {
optional string string = 1;
}

310
vendor/k8s.io/apimachinery/pkg/api/resource/math.go generated vendored Normal file
View File

@ -0,0 +1,310 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math/big"
inf "gopkg.in/inf.v0"
)
const (
// maxInt64Factors is the highest value that will be checked when removing factors of 10 from an int64.
// It is also the maximum decimal digits that can be represented with an int64.
maxInt64Factors = 18
)
var (
// Commonly needed big.Int values-- treat as read only!
bigTen = big.NewInt(10)
bigZero = big.NewInt(0)
bigOne = big.NewInt(1)
bigThousand = big.NewInt(1000)
big1024 = big.NewInt(1024)
// Commonly needed inf.Dec values-- treat as read only!
decZero = inf.NewDec(0, 0)
decOne = inf.NewDec(1, 0)
// Largest (in magnitude) number allowed.
maxAllowed = infDecAmount{inf.NewDec((1<<63)-1, 0)} // == max int64
// The maximum value we can represent milli-units for.
// Compare with the return value of Quantity.Value() to
// see if it's safe to use Quantity.MilliValue().
MaxMilliValue = int64(((1 << 63) - 1) / 1000)
)
const mostNegative = -(mostPositive + 1)
const mostPositive = 1<<63 - 1
// int64Add returns a+b, or false if that would overflow int64.
func int64Add(a, b int64) (int64, bool) {
c := a + b
switch {
case a > 0 && b > 0:
if c < 0 {
return 0, false
}
case a < 0 && b < 0:
if c > 0 {
return 0, false
}
if a == mostNegative && b == mostNegative {
return 0, false
}
}
return c, true
}
// int64Multiply returns a*b, or false if that would overflow or underflow int64.
func int64Multiply(a, b int64) (int64, bool) {
if a == 0 || b == 0 || a == 1 || b == 1 {
return a * b, true
}
if a == mostNegative || b == mostNegative {
return 0, false
}
c := a * b
return c, c/b == a
}
// int64MultiplyScale returns a*b, assuming b is greater than one, or false if that would overflow or underflow int64.
// Use when b is known to be greater than one.
func int64MultiplyScale(a int64, b int64) (int64, bool) {
if a == 0 || a == 1 {
return a * b, true
}
if a == mostNegative && b != 1 {
return 0, false
}
c := a * b
return c, c/b == a
}
// int64MultiplyScale10 multiplies a by 10, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 10) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale10(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 10, true
}
if a == mostNegative {
return 0, false
}
c := a * 10
return c, c/10 == a
}
// int64MultiplyScale100 multiplies a by 100, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 100) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale100(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 100, true
}
if a == mostNegative {
return 0, false
}
c := a * 100
return c, c/100 == a
}
// int64MultiplyScale1000 multiplies a by 1000, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 1000) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale1000(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 1000, true
}
if a == mostNegative {
return 0, false
}
c := a * 1000
return c, c/1000 == a
}
// positiveScaleInt64 multiplies base by 10^scale, returning false if the
// value overflows. Passing a negative scale is undefined.
func positiveScaleInt64(base int64, scale Scale) (int64, bool) {
switch scale {
case 0:
return base, true
case 1:
return int64MultiplyScale10(base)
case 2:
return int64MultiplyScale100(base)
case 3:
return int64MultiplyScale1000(base)
case 6:
return int64MultiplyScale(base, 1000000)
case 9:
return int64MultiplyScale(base, 1000000000)
default:
value := base
var ok bool
for i := Scale(0); i < scale; i++ {
if value, ok = int64MultiplyScale(value, 10); !ok {
return 0, false
}
}
return value, true
}
}
// negativeScaleInt64 reduces base by the provided scale, rounding up, until the
// value is zero or the scale is reached. Passing a negative scale is undefined.
// The value returned, if not exact, is rounded away from zero.
func negativeScaleInt64(base int64, scale Scale) (result int64, exact bool) {
if scale == 0 {
return base, true
}
value := base
var fraction bool
for i := Scale(0); i < scale; i++ {
if !fraction && value%10 != 0 {
fraction = true
}
value = value / 10
if value == 0 {
if fraction {
if base > 0 {
return 1, false
}
return -1, false
}
return 0, true
}
}
if fraction {
if base > 0 {
value++
} else {
value--
}
}
return value, !fraction
}
func pow10Int64(b int64) int64 {
switch b {
case 0:
return 1
case 1:
return 10
case 2:
return 100
case 3:
return 1000
case 4:
return 10000
case 5:
return 100000
case 6:
return 1000000
case 7:
return 10000000
case 8:
return 100000000
case 9:
return 1000000000
case 10:
return 10000000000
case 11:
return 100000000000
case 12:
return 1000000000000
case 13:
return 10000000000000
case 14:
return 100000000000000
case 15:
return 1000000000000000
case 16:
return 10000000000000000
case 17:
return 100000000000000000
case 18:
return 1000000000000000000
default:
return 0
}
}
// negativeScaleInt64 returns the result of dividing base by scale * 10 and the remainder, or
// false if no such division is possible. Dividing by negative scales is undefined.
func divideByScaleInt64(base int64, scale Scale) (result, remainder int64, exact bool) {
if scale == 0 {
return base, 0, true
}
// the max scale representable in base 10 in an int64 is 18 decimal places
if scale >= 18 {
return 0, base, false
}
divisor := pow10Int64(int64(scale))
return base / divisor, base % divisor, true
}
// removeInt64Factors divides in a loop; the return values have the property that
// value == result * base ^ scale
func removeInt64Factors(value int64, base int64) (result int64, times int32) {
times = 0
result = value
negative := result < 0
if negative {
result = -result
}
switch base {
// allow the compiler to optimize the common cases
case 10:
for result >= 10 && result%10 == 0 {
times++
result = result / 10
}
// allow the compiler to optimize the common cases
case 1024:
for result >= 1024 && result%1024 == 0 {
times++
result = result / 1024
}
default:
for result >= base && result%base == 0 {
times++
result = result / base
}
}
if negative {
result = -result
}
return result, times
}
// removeBigIntFactors divides in a loop; the return values have the property that
// d == result * factor ^ times
// d may be modified in place.
// If d == 0, then the return values will be (0, 0)
func removeBigIntFactors(d, factor *big.Int) (result *big.Int, times int32) {
q := big.NewInt(0)
m := big.NewInt(0)
for d.Cmp(bigZero) != 0 {
q.DivMod(d, factor, m)
if m.Cmp(bigZero) != 0 {
break
}
times++
d, q = q, d
}
return d, times
}

733
vendor/k8s.io/apimachinery/pkg/api/resource/quantity.go generated vendored Normal file
View File

@ -0,0 +1,733 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"bytes"
"errors"
"fmt"
"math/big"
"strconv"
"strings"
inf "gopkg.in/inf.v0"
)
// Quantity is a fixed-point representation of a number.
// It provides convenient marshaling/unmarshaling in JSON and YAML,
// in addition to String() and AsInt64() accessors.
//
// The serialization format is:
//
// <quantity> ::= <signedNumber><suffix>
// (Note that <suffix> may be empty, from the "" case in <decimalSI>.)
// <digit> ::= 0 | 1 | ... | 9
// <digits> ::= <digit> | <digit><digits>
// <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
// <sign> ::= "+" | "-"
// <signedNumber> ::= <number> | <sign><number>
// <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI>
// <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei
// (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
// <decimalSI> ::= m | "" | k | M | G | T | P | E
// (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
//
// No matter which of the three exponent forms is used, no quantity may represent
// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
// places. Numbers larger or more precise will be capped or rounded up.
// (E.g.: 0.1m will rounded up to 1m.)
// This may be extended in the future if we require larger or smaller quantities.
//
// When a Quantity is parsed from a string, it will remember the type of suffix
// it had, and will use the same type again when it is serialized.
//
// Before serializing, Quantity will be put in "canonical form".
// This means that Exponent/suffix will be adjusted up or down (with a
// corresponding increase or decrease in Mantissa) such that:
// a. No precision is lost
// b. No fractional digits will be emitted
// c. The exponent (or suffix) is as large as possible.
// The sign will be omitted unless the number is negative.
//
// Examples:
// 1.5 will be serialized as "1500m"
// 1.5Gi will be serialized as "1536Mi"
//
// Note that the quantity will NEVER be internally represented by a
// floating point number. That is the whole point of this exercise.
//
// Non-canonical values will still parse as long as they are well formed,
// but will be re-emitted in their canonical form. (So always use canonical
// form, or don't diff.)
//
// This format is intended to make it difficult to use these numbers without
// writing some sort of special handling code in the hopes that that will
// cause implementors to also use a fixed point implementation.
//
// +protobuf=true
// +protobuf.embed=string
// +protobuf.options.marshal=false
// +protobuf.options.(gogoproto.goproto_stringer)=false
// +k8s:deepcopy-gen=true
// +k8s:openapi-gen=true
type Quantity struct {
// i is the quantity in int64 scaled form, if d.Dec == nil
i int64Amount
// d is the quantity in inf.Dec form if d.Dec != nil
d infDecAmount
// s is the generated value of this quantity to avoid recalculation
s string
// Change Format at will. See the comment for Canonicalize for
// more details.
Format
}
// CanonicalValue allows a quantity amount to be converted to a string.
type CanonicalValue interface {
// AsCanonicalBytes returns a byte array representing the string representation
// of the value mantissa and an int32 representing its exponent in base-10. Callers may
// pass a byte slice to the method to avoid allocations.
AsCanonicalBytes(out []byte) ([]byte, int32)
// AsCanonicalBase1024Bytes returns a byte array representing the string representation
// of the value mantissa and an int32 representing its exponent in base-1024. Callers
// may pass a byte slice to the method to avoid allocations.
AsCanonicalBase1024Bytes(out []byte) ([]byte, int32)
}
// Format lists the three possible formattings of a quantity.
type Format string
const (
DecimalExponent = Format("DecimalExponent") // e.g., 12e6
BinarySI = Format("BinarySI") // e.g., 12Mi (12 * 2^20)
DecimalSI = Format("DecimalSI") // e.g., 12M (12 * 10^6)
)
// MustParse turns the given string into a quantity or panics; for tests
// or others cases where you know the string is valid.
func MustParse(str string) Quantity {
q, err := ParseQuantity(str)
if err != nil {
panic(fmt.Errorf("cannot parse '%v': %v", str, err))
}
return q
}
const (
// splitREString is used to separate a number from its suffix; as such,
// this is overly permissive, but that's OK-- it will be checked later.
splitREString = "^([+-]?[0-9.]+)([eEinumkKMGTP]*[-+]?[0-9]*)$"
)
var (
// Errors that could happen while parsing a string.
ErrFormatWrong = errors.New("quantities must match the regular expression '" + splitREString + "'")
ErrNumeric = errors.New("unable to parse numeric part of quantity")
ErrSuffix = errors.New("unable to parse quantity's suffix")
)
// parseQuantityString is a fast scanner for quantity values.
func parseQuantityString(str string) (positive bool, value, num, denom, suffix string, err error) {
positive = true
pos := 0
end := len(str)
// handle leading sign
if pos < end {
switch str[0] {
case '-':
positive = false
pos++
case '+':
pos++
}
}
// strip leading zeros
Zeroes:
for i := pos; ; i++ {
if i >= end {
num = "0"
value = num
return
}
switch str[i] {
case '0':
pos++
default:
break Zeroes
}
}
// extract the numerator
Num:
for i := pos; ; i++ {
if i >= end {
num = str[pos:end]
value = str[0:end]
return
}
switch str[i] {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
default:
num = str[pos:i]
pos = i
break Num
}
}
// if we stripped all numerator positions, always return 0
if len(num) == 0 {
num = "0"
}
// handle a denominator
if pos < end && str[pos] == '.' {
pos++
Denom:
for i := pos; ; i++ {
if i >= end {
denom = str[pos:end]
value = str[0:end]
return
}
switch str[i] {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
default:
denom = str[pos:i]
pos = i
break Denom
}
}
// TODO: we currently allow 1.G, but we may not want to in the future.
// if len(denom) == 0 {
// err = ErrFormatWrong
// return
// }
}
value = str[0:pos]
// grab the elements of the suffix
suffixStart := pos
for i := pos; ; i++ {
if i >= end {
suffix = str[suffixStart:end]
return
}
if !strings.ContainsAny(str[i:i+1], "eEinumkKMGTP") {
pos = i
break
}
}
if pos < end {
switch str[pos] {
case '-', '+':
pos++
}
}
Suffix:
for i := pos; ; i++ {
if i >= end {
suffix = str[suffixStart:end]
return
}
switch str[i] {
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
default:
break Suffix
}
}
// we encountered a non decimal in the Suffix loop, but the last character
// was not a valid exponent
err = ErrFormatWrong
return
}
// ParseQuantity turns str into a Quantity, or returns an error.
func ParseQuantity(str string) (Quantity, error) {
if len(str) == 0 {
return Quantity{}, ErrFormatWrong
}
if str == "0" {
return Quantity{Format: DecimalSI, s: str}, nil
}
positive, value, num, denom, suf, err := parseQuantityString(str)
if err != nil {
return Quantity{}, err
}
base, exponent, format, ok := quantitySuffixer.interpret(suffix(suf))
if !ok {
return Quantity{}, ErrSuffix
}
precision := int32(0)
scale := int32(0)
mantissa := int64(1)
switch format {
case DecimalExponent, DecimalSI:
scale = exponent
precision = maxInt64Factors - int32(len(num)+len(denom))
case BinarySI:
scale = 0
switch {
case exponent >= 0 && len(denom) == 0:
// only handle positive binary numbers with the fast path
mantissa = int64(int64(mantissa) << uint64(exponent))
// 1Mi (2^20) has ~6 digits of decimal precision, so exponent*3/10 -1 is roughly the precision
precision = 15 - int32(len(num)) - int32(float32(exponent)*3/10) - 1
default:
precision = -1
}
}
if precision >= 0 {
// if we have a denominator, shift the entire value to the left by the number of places in the
// denominator
scale -= int32(len(denom))
if scale >= int32(Nano) {
shifted := num + denom
var value int64
value, err := strconv.ParseInt(shifted, 10, 64)
if err != nil {
return Quantity{}, ErrNumeric
}
if result, ok := int64Multiply(value, int64(mantissa)); ok {
if !positive {
result = -result
}
// if the number is in canonical form, reuse the string
switch format {
case BinarySI:
if exponent%10 == 0 && (value&0x07 != 0) {
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
}
default:
if scale%3 == 0 && !strings.HasSuffix(shifted, "000") && shifted[0] != '0' {
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
}
}
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format}, nil
}
}
}
amount := new(inf.Dec)
if _, ok := amount.SetString(value); !ok {
return Quantity{}, ErrNumeric
}
// So that no one but us has to think about suffixes, remove it.
if base == 10 {
amount.SetScale(amount.Scale() + Scale(exponent).infScale())
} else if base == 2 {
// numericSuffix = 2 ** exponent
numericSuffix := big.NewInt(1).Lsh(bigOne, uint(exponent))
ub := amount.UnscaledBig()
amount.SetUnscaledBig(ub.Mul(ub, numericSuffix))
}
// Cap at min/max bounds.
sign := amount.Sign()
if sign == -1 {
amount.Neg(amount)
}
// This rounds non-zero values up to the minimum representable value, under the theory that
// if you want some resources, you should get some resources, even if you asked for way too small
// of an amount. Arguably, this should be inf.RoundHalfUp (normal rounding), but that would have
// the side effect of rounding values < .5n to zero.
if v, ok := amount.Unscaled(); v != int64(0) || !ok {
amount.Round(amount, Nano.infScale(), inf.RoundUp)
}
// The max is just a simple cap.
// TODO: this prevents accumulating quantities greater than int64, for instance quota across a cluster
if format == BinarySI && amount.Cmp(maxAllowed.Dec) > 0 {
amount.Set(maxAllowed.Dec)
}
if format == BinarySI && amount.Cmp(decOne) < 0 && amount.Cmp(decZero) > 0 {
// This avoids rounding and hopefully confusion, too.
format = DecimalSI
}
if sign == -1 {
amount.Neg(amount)
}
return Quantity{d: infDecAmount{amount}, Format: format}, nil
}
// DeepCopy returns a deep-copy of the Quantity value. Note that the method
// receiver is a value, so we can mutate it in-place and return it.
func (q Quantity) DeepCopy() Quantity {
if q.d.Dec != nil {
tmp := &inf.Dec{}
q.d.Dec = tmp.Set(q.d.Dec)
}
return q
}
// OpenAPISchemaType is used by the kube-openapi generator when constructing
// the OpenAPI spec of this type.
//
// See: https://github.com/kubernetes/kube-openapi/tree/master/pkg/generators
func (_ Quantity) OpenAPISchemaType() []string { return []string{"string"} }
// OpenAPISchemaFormat is used by the kube-openapi generator when constructing
// the OpenAPI spec of this type.
func (_ Quantity) OpenAPISchemaFormat() string { return "" }
// CanonicalizeBytes returns the canonical form of q and its suffix (see comment on Quantity).
//
// Note about BinarySI:
// * If q.Format is set to BinarySI and q.Amount represents a non-zero value between
// -1 and +1, it will be emitted as if q.Format were DecimalSI.
// * Otherwise, if q.Format is set to BinarySI, fractional parts of q.Amount will be
// rounded up. (1.1i becomes 2i.)
func (q *Quantity) CanonicalizeBytes(out []byte) (result, suffix []byte) {
if q.IsZero() {
return zeroBytes, nil
}
var rounded CanonicalValue
format := q.Format
switch format {
case DecimalExponent, DecimalSI:
case BinarySI:
if q.CmpInt64(-1024) > 0 && q.CmpInt64(1024) < 0 {
// This avoids rounding and hopefully confusion, too.
format = DecimalSI
} else {
var exact bool
if rounded, exact = q.AsScale(0); !exact {
// Don't lose precision-- show as DecimalSI
format = DecimalSI
}
}
default:
format = DecimalExponent
}
// TODO: If BinarySI formatting is requested but would cause rounding, upgrade to
// one of the other formats.
switch format {
case DecimalExponent, DecimalSI:
number, exponent := q.AsCanonicalBytes(out)
suffix, _ := quantitySuffixer.constructBytes(10, exponent, format)
return number, suffix
default:
// format must be BinarySI
number, exponent := rounded.AsCanonicalBase1024Bytes(out)
suffix, _ := quantitySuffixer.constructBytes(2, exponent*10, format)
return number, suffix
}
}
// AsInt64 returns a representation of the current value as an int64 if a fast conversion
// is possible. If false is returned, callers must use the inf.Dec form of this quantity.
func (q *Quantity) AsInt64() (int64, bool) {
if q.d.Dec != nil {
return 0, false
}
return q.i.AsInt64()
}
// ToDec promotes the quantity in place to use an inf.Dec representation and returns itself.
func (q *Quantity) ToDec() *Quantity {
if q.d.Dec == nil {
q.d.Dec = q.i.AsDec()
q.i = int64Amount{}
}
return q
}
// AsDec returns the quantity as represented by a scaled inf.Dec.
func (q *Quantity) AsDec() *inf.Dec {
if q.d.Dec != nil {
return q.d.Dec
}
q.d.Dec = q.i.AsDec()
q.i = int64Amount{}
return q.d.Dec
}
// AsCanonicalBytes returns the canonical byte representation of this quantity as a mantissa
// and base 10 exponent. The out byte slice may be passed to the method to avoid an extra
// allocation.
func (q *Quantity) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
if q.d.Dec != nil {
return q.d.AsCanonicalBytes(out)
}
return q.i.AsCanonicalBytes(out)
}
// IsZero returns true if the quantity is equal to zero.
func (q *Quantity) IsZero() bool {
if q.d.Dec != nil {
return q.d.Dec.Sign() == 0
}
return q.i.value == 0
}
// Sign returns 0 if the quantity is zero, -1 if the quantity is less than zero, or 1 if the
// quantity is greater than zero.
func (q *Quantity) Sign() int {
if q.d.Dec != nil {
return q.d.Dec.Sign()
}
return q.i.Sign()
}
// AsScale returns the current value, rounded up to the provided scale, and returns
// false if the scale resulted in a loss of precision.
func (q *Quantity) AsScale(scale Scale) (CanonicalValue, bool) {
if q.d.Dec != nil {
return q.d.AsScale(scale)
}
return q.i.AsScale(scale)
}
// RoundUp updates the quantity to the provided scale, ensuring that the value is at
// least 1. False is returned if the rounding operation resulted in a loss of precision.
// Negative numbers are rounded away from zero (-9 scale 1 rounds to -10).
func (q *Quantity) RoundUp(scale Scale) bool {
if q.d.Dec != nil {
q.s = ""
d, exact := q.d.AsScale(scale)
q.d = d
return exact
}
// avoid clearing the string value if we have already calculated it
if q.i.scale >= scale {
return true
}
q.s = ""
i, exact := q.i.AsScale(scale)
q.i = i
return exact
}
// Add adds the provide y quantity to the current value. If the current value is zero,
// the format of the quantity will be updated to the format of y.
func (q *Quantity) Add(y Quantity) {
q.s = ""
if q.d.Dec == nil && y.d.Dec == nil {
if q.i.value == 0 {
q.Format = y.Format
}
if q.i.Add(y.i) {
return
}
} else if q.IsZero() {
q.Format = y.Format
}
q.ToDec().d.Dec.Add(q.d.Dec, y.AsDec())
}
// Sub subtracts the provided quantity from the current value in place. If the current
// value is zero, the format of the quantity will be updated to the format of y.
func (q *Quantity) Sub(y Quantity) {
q.s = ""
if q.IsZero() {
q.Format = y.Format
}
if q.d.Dec == nil && y.d.Dec == nil && q.i.Sub(y.i) {
return
}
q.ToDec().d.Dec.Sub(q.d.Dec, y.AsDec())
}
// Cmp returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
// quantity is greater than y.
func (q *Quantity) Cmp(y Quantity) int {
if q.d.Dec == nil && y.d.Dec == nil {
return q.i.Cmp(y.i)
}
return q.AsDec().Cmp(y.AsDec())
}
// CmpInt64 returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
// quantity is greater than y.
func (q *Quantity) CmpInt64(y int64) int {
if q.d.Dec != nil {
return q.d.Dec.Cmp(inf.NewDec(y, inf.Scale(0)))
}
return q.i.Cmp(int64Amount{value: y})
}
// Neg sets quantity to be the negative value of itself.
func (q *Quantity) Neg() {
q.s = ""
if q.d.Dec == nil {
q.i.value = -q.i.value
return
}
q.d.Dec.Neg(q.d.Dec)
}
// Equal checks equality of two Quantities. This is useful for testing with
// cmp.Equal.
func (q Quantity) Equal(v Quantity) bool {
return q.Cmp(v) == 0
}
// int64QuantityExpectedBytes is the expected width in bytes of the canonical string representation
// of most Quantity values.
const int64QuantityExpectedBytes = 18
// String formats the Quantity as a string, caching the result if not calculated.
// String is an expensive operation and caching this result significantly reduces the cost of
// normal parse / marshal operations on Quantity.
func (q *Quantity) String() string {
if len(q.s) == 0 {
result := make([]byte, 0, int64QuantityExpectedBytes)
number, suffix := q.CanonicalizeBytes(result)
number = append(number, suffix...)
q.s = string(number)
}
return q.s
}
// MarshalJSON implements the json.Marshaller interface.
func (q Quantity) MarshalJSON() ([]byte, error) {
if len(q.s) > 0 {
out := make([]byte, len(q.s)+2)
out[0], out[len(out)-1] = '"', '"'
copy(out[1:], q.s)
return out, nil
}
result := make([]byte, int64QuantityExpectedBytes, int64QuantityExpectedBytes)
result[0] = '"'
number, suffix := q.CanonicalizeBytes(result[1:1])
// if the same slice was returned to us that we passed in, avoid another allocation by copying number into
// the source slice and returning that
if len(number) > 0 && &number[0] == &result[1] && (len(number)+len(suffix)+2) <= int64QuantityExpectedBytes {
number = append(number, suffix...)
number = append(number, '"')
return result[:1+len(number)], nil
}
// if CanonicalizeBytes needed more space than our slice provided, we may need to allocate again so use
// append
result = result[:1]
result = append(result, number...)
result = append(result, suffix...)
result = append(result, '"')
return result, nil
}
// ToUnstructured implements the value.UnstructuredConverter interface.
func (q Quantity) ToUnstructured() interface{} {
return q.String()
}
// UnmarshalJSON implements the json.Unmarshaller interface.
// TODO: Remove support for leading/trailing whitespace
func (q *Quantity) UnmarshalJSON(value []byte) error {
l := len(value)
if l == 4 && bytes.Equal(value, []byte("null")) {
q.d.Dec = nil
q.i = int64Amount{}
return nil
}
if l >= 2 && value[0] == '"' && value[l-1] == '"' {
value = value[1 : l-1]
}
parsed, err := ParseQuantity(strings.TrimSpace(string(value)))
if err != nil {
return err
}
// This copy is safe because parsed will not be referred to again.
*q = parsed
return nil
}
// NewQuantity returns a new Quantity representing the given
// value in the given format.
func NewQuantity(value int64, format Format) *Quantity {
return &Quantity{
i: int64Amount{value: value},
Format: format,
}
}
// NewMilliQuantity returns a new Quantity representing the given
// value * 1/1000 in the given format. Note that BinarySI formatting
// will round fractional values, and will be changed to DecimalSI for
// values x where (-1 < x < 1) && (x != 0).
func NewMilliQuantity(value int64, format Format) *Quantity {
return &Quantity{
i: int64Amount{value: value, scale: -3},
Format: format,
}
}
// NewScaledQuantity returns a new Quantity representing the given
// value * 10^scale in DecimalSI format.
func NewScaledQuantity(value int64, scale Scale) *Quantity {
return &Quantity{
i: int64Amount{value: value, scale: scale},
Format: DecimalSI,
}
}
// Value returns the unscaled value of q rounded up to the nearest integer away from 0.
func (q *Quantity) Value() int64 {
return q.ScaledValue(0)
}
// MilliValue returns the value of ceil(q * 1000); this could overflow an int64;
// if that's a concern, call Value() first to verify the number is small enough.
func (q *Quantity) MilliValue() int64 {
return q.ScaledValue(Milli)
}
// ScaledValue returns the value of ceil(q / 10^scale).
// For example, NewQuantity(1, DecimalSI).ScaledValue(Milli) returns 1000.
// This could overflow an int64.
// To detect overflow, call Value() first and verify the expected magnitude.
func (q *Quantity) ScaledValue(scale Scale) int64 {
if q.d.Dec == nil {
i, _ := q.i.AsScaledInt64(scale)
return i
}
dec := q.d.Dec
return scaledValue(dec.UnscaledBig(), int(dec.Scale()), int(scale.infScale()))
}
// Set sets q's value to be value.
func (q *Quantity) Set(value int64) {
q.SetScaled(value, 0)
}
// SetMilli sets q's value to be value * 1/1000.
func (q *Quantity) SetMilli(value int64) {
q.SetScaled(value, Milli)
}
// SetScaled sets q's value to be value * 10^scale
func (q *Quantity) SetScaled(value int64, scale Scale) {
q.s = ""
q.d.Dec = nil
q.i = int64Amount{value: value, scale: scale}
}

View File

@ -0,0 +1,288 @@
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"fmt"
"io"
"math/bits"
"github.com/gogo/protobuf/proto"
)
var _ proto.Sizer = &Quantity{}
func (m *Quantity) Marshal() (data []byte, err error) {
size := m.Size()
data = make([]byte, size)
n, err := m.MarshalToSizedBuffer(data[:size])
if err != nil {
return nil, err
}
return data[:n], nil
}
// MarshalTo is a customized version of the generated Protobuf unmarshaler for a struct
// with a single string field.
func (m *Quantity) MarshalTo(data []byte) (int, error) {
size := m.Size()
return m.MarshalToSizedBuffer(data[:size])
}
// MarshalToSizedBuffer is a customized version of the generated
// Protobuf unmarshaler for a struct with a single string field.
func (m *Quantity) MarshalToSizedBuffer(data []byte) (int, error) {
i := len(data)
_ = i
var l int
_ = l
// BEGIN CUSTOM MARSHAL
out := m.String()
i -= len(out)
copy(data[i:], out)
i = encodeVarintGenerated(data, i, uint64(len(out)))
// END CUSTOM MARSHAL
i--
data[i] = 0xa
return len(data) - i, nil
}
func encodeVarintGenerated(data []byte, offset int, v uint64) int {
offset -= sovGenerated(v)
base := offset
for v >= 1<<7 {
data[offset] = uint8(v&0x7f | 0x80)
v >>= 7
offset++
}
data[offset] = uint8(v)
return base
}
func (m *Quantity) Size() (n int) {
var l int
_ = l
// BEGIN CUSTOM SIZE
l = len(m.String())
// END CUSTOM SIZE
n += 1 + l + sovGenerated(uint64(l))
return n
}
func sovGenerated(x uint64) (n int) {
return (bits.Len64(x|1) + 6) / 7
}
// Unmarshal is a customized version of the generated Protobuf unmarshaler for a struct
// with a single string field.
func (m *Quantity) Unmarshal(data []byte) error {
l := len(data)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowGenerated
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return fmt.Errorf("proto: Quantity: wiretype end group for non-group")
}
if fieldNum <= 0 {
return fmt.Errorf("proto: Quantity: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 2 {
return fmt.Errorf("proto: wrong wireType = %d for field String_", wireType)
}
var stringLen uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowGenerated
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
stringLen |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
intStringLen := int(stringLen)
if intStringLen < 0 {
return ErrInvalidLengthGenerated
}
postIndex := iNdEx + intStringLen
if postIndex > l {
return io.ErrUnexpectedEOF
}
s := string(data[iNdEx:postIndex])
// BEGIN CUSTOM DECODE
p, err := ParseQuantity(s)
if err != nil {
return err
}
*m = p
// END CUSTOM DECODE
iNdEx = postIndex
default:
iNdEx = preIndex
skippy, err := skipGenerated(data[iNdEx:])
if err != nil {
return err
}
if skippy < 0 {
return ErrInvalidLengthGenerated
}
if (iNdEx + skippy) > l {
return io.ErrUnexpectedEOF
}
iNdEx += skippy
}
}
if iNdEx > l {
return io.ErrUnexpectedEOF
}
return nil
}
func skipGenerated(data []byte) (n int, err error) {
l := len(data)
iNdEx := 0
for iNdEx < l {
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowGenerated
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
wireType := int(wire & 0x7)
switch wireType {
case 0:
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowGenerated
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
iNdEx++
if data[iNdEx-1] < 0x80 {
break
}
}
return iNdEx, nil
case 1:
iNdEx += 8
return iNdEx, nil
case 2:
var length int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowGenerated
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
length |= (int(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
iNdEx += length
if length < 0 {
return 0, ErrInvalidLengthGenerated
}
return iNdEx, nil
case 3:
for {
var innerWire uint64
var start int = iNdEx
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowGenerated
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := data[iNdEx]
iNdEx++
innerWire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
innerWireType := int(innerWire & 0x7)
if innerWireType == 4 {
break
}
next, err := skipGenerated(data[start:])
if err != nil {
return 0, err
}
iNdEx = start + next
}
return iNdEx, nil
case 4:
return iNdEx, nil
case 5:
iNdEx += 4
return iNdEx, nil
default:
return 0, fmt.Errorf("proto: illegal wireType %d", wireType)
}
}
panic("unreachable")
}
var (
ErrInvalidLengthGenerated = fmt.Errorf("proto: negative length found during unmarshaling")
ErrIntOverflowGenerated = fmt.Errorf("proto: integer overflow")
)

View File

@ -0,0 +1,95 @@
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math"
"math/big"
"sync"
)
var (
// A sync pool to reduce allocation.
intPool sync.Pool
maxInt64 = big.NewInt(math.MaxInt64)
)
func init() {
intPool.New = func() interface{} {
return &big.Int{}
}
}
// scaledValue scales given unscaled value from scale to new Scale and returns
// an int64. It ALWAYS rounds up the result when scale down. The final result might
// overflow.
//
// scale, newScale represents the scale of the unscaled decimal.
// The mathematical value of the decimal is unscaled * 10**(-scale).
func scaledValue(unscaled *big.Int, scale, newScale int) int64 {
dif := scale - newScale
if dif == 0 {
return unscaled.Int64()
}
// Handle scale up
// This is an easy case, we do not need to care about rounding and overflow.
// If any intermediate operation causes overflow, the result will overflow.
if dif < 0 {
return unscaled.Int64() * int64(math.Pow10(-dif))
}
// Handle scale down
// We have to be careful about the intermediate operations.
// fast path when unscaled < max.Int64 and exp(10,dif) < max.Int64
const log10MaxInt64 = 19
if unscaled.Cmp(maxInt64) < 0 && dif < log10MaxInt64 {
divide := int64(math.Pow10(dif))
result := unscaled.Int64() / divide
mod := unscaled.Int64() % divide
if mod != 0 {
return result + 1
}
return result
}
// We should only convert back to int64 when getting the result.
divisor := intPool.Get().(*big.Int)
exp := intPool.Get().(*big.Int)
result := intPool.Get().(*big.Int)
defer func() {
intPool.Put(divisor)
intPool.Put(exp)
intPool.Put(result)
}()
// divisor = 10^(dif)
// TODO: create loop up table if exp costs too much.
divisor.Exp(bigTen, exp.SetInt64(int64(dif)), nil)
// reuse exp
remainder := exp
// result = unscaled / divisor
// remainder = unscaled % divisor
result.DivMod(unscaled, divisor, remainder)
if remainder.Sign() != 0 {
return result.Int64() + 1
}
return result.Int64()
}

198
vendor/k8s.io/apimachinery/pkg/api/resource/suffix.go generated vendored Normal file
View File

@ -0,0 +1,198 @@
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"strconv"
)
type suffix string
// suffixer can interpret and construct suffixes.
type suffixer interface {
interpret(suffix) (base, exponent int32, fmt Format, ok bool)
construct(base, exponent int32, fmt Format) (s suffix, ok bool)
constructBytes(base, exponent int32, fmt Format) (s []byte, ok bool)
}
// quantitySuffixer handles suffixes for all three formats that quantity
// can handle.
var quantitySuffixer = newSuffixer()
type bePair struct {
base, exponent int32
}
type listSuffixer struct {
suffixToBE map[suffix]bePair
beToSuffix map[bePair]suffix
beToSuffixBytes map[bePair][]byte
}
func (ls *listSuffixer) addSuffix(s suffix, pair bePair) {
if ls.suffixToBE == nil {
ls.suffixToBE = map[suffix]bePair{}
}
if ls.beToSuffix == nil {
ls.beToSuffix = map[bePair]suffix{}
}
if ls.beToSuffixBytes == nil {
ls.beToSuffixBytes = map[bePair][]byte{}
}
ls.suffixToBE[s] = pair
ls.beToSuffix[pair] = s
ls.beToSuffixBytes[pair] = []byte(s)
}
func (ls *listSuffixer) lookup(s suffix) (base, exponent int32, ok bool) {
pair, ok := ls.suffixToBE[s]
if !ok {
return 0, 0, false
}
return pair.base, pair.exponent, true
}
func (ls *listSuffixer) construct(base, exponent int32) (s suffix, ok bool) {
s, ok = ls.beToSuffix[bePair{base, exponent}]
return
}
func (ls *listSuffixer) constructBytes(base, exponent int32) (s []byte, ok bool) {
s, ok = ls.beToSuffixBytes[bePair{base, exponent}]
return
}
type suffixHandler struct {
decSuffixes listSuffixer
binSuffixes listSuffixer
}
type fastLookup struct {
*suffixHandler
}
func (l fastLookup) interpret(s suffix) (base, exponent int32, format Format, ok bool) {
switch s {
case "":
return 10, 0, DecimalSI, true
case "n":
return 10, -9, DecimalSI, true
case "u":
return 10, -6, DecimalSI, true
case "m":
return 10, -3, DecimalSI, true
case "k":
return 10, 3, DecimalSI, true
case "M":
return 10, 6, DecimalSI, true
case "G":
return 10, 9, DecimalSI, true
}
return l.suffixHandler.interpret(s)
}
func newSuffixer() suffixer {
sh := &suffixHandler{}
// IMPORTANT: if you change this section you must change fastLookup
sh.binSuffixes.addSuffix("Ki", bePair{2, 10})
sh.binSuffixes.addSuffix("Mi", bePair{2, 20})
sh.binSuffixes.addSuffix("Gi", bePair{2, 30})
sh.binSuffixes.addSuffix("Ti", bePair{2, 40})
sh.binSuffixes.addSuffix("Pi", bePair{2, 50})
sh.binSuffixes.addSuffix("Ei", bePair{2, 60})
// Don't emit an error when trying to produce
// a suffix for 2^0.
sh.decSuffixes.addSuffix("", bePair{2, 0})
sh.decSuffixes.addSuffix("n", bePair{10, -9})
sh.decSuffixes.addSuffix("u", bePair{10, -6})
sh.decSuffixes.addSuffix("m", bePair{10, -3})
sh.decSuffixes.addSuffix("", bePair{10, 0})
sh.decSuffixes.addSuffix("k", bePair{10, 3})
sh.decSuffixes.addSuffix("M", bePair{10, 6})
sh.decSuffixes.addSuffix("G", bePair{10, 9})
sh.decSuffixes.addSuffix("T", bePair{10, 12})
sh.decSuffixes.addSuffix("P", bePair{10, 15})
sh.decSuffixes.addSuffix("E", bePair{10, 18})
return fastLookup{sh}
}
func (sh *suffixHandler) construct(base, exponent int32, fmt Format) (s suffix, ok bool) {
switch fmt {
case DecimalSI:
return sh.decSuffixes.construct(base, exponent)
case BinarySI:
return sh.binSuffixes.construct(base, exponent)
case DecimalExponent:
if base != 10 {
return "", false
}
if exponent == 0 {
return "", true
}
return suffix("e" + strconv.FormatInt(int64(exponent), 10)), true
}
return "", false
}
func (sh *suffixHandler) constructBytes(base, exponent int32, format Format) (s []byte, ok bool) {
switch format {
case DecimalSI:
return sh.decSuffixes.constructBytes(base, exponent)
case BinarySI:
return sh.binSuffixes.constructBytes(base, exponent)
case DecimalExponent:
if base != 10 {
return nil, false
}
if exponent == 0 {
return nil, true
}
result := make([]byte, 8, 8)
result[0] = 'e'
number := strconv.AppendInt(result[1:1], int64(exponent), 10)
if &result[1] == &number[0] {
return result[:1+len(number)], true
}
result = append(result[:1], number...)
return result, true
}
return nil, false
}
func (sh *suffixHandler) interpret(suffix suffix) (base, exponent int32, fmt Format, ok bool) {
// Try lookup tables first
if b, e, ok := sh.decSuffixes.lookup(suffix); ok {
return b, e, DecimalSI, true
}
if b, e, ok := sh.binSuffixes.lookup(suffix); ok {
return b, e, BinarySI, true
}
if len(suffix) > 1 && (suffix[0] == 'E' || suffix[0] == 'e') {
parsed, err := strconv.ParseInt(string(suffix[1:]), 10, 64)
if err != nil {
return 0, 0, DecimalExponent, false
}
return 10, int32(parsed), DecimalExponent, true
}
return 0, 0, DecimalExponent, false
}

View File

@ -0,0 +1,27 @@
// +build !ignore_autogenerated
/*
Copyright The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Code generated by deepcopy-gen. DO NOT EDIT.
package resource
// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
func (in *Quantity) DeepCopyInto(out *Quantity) {
*out = in.DeepCopy()
return
}