mirror of
https://github.com/openfaas/faasd.git
synced 2025-06-09 08:26:47 +00:00
Update vendor for apimachinery
Signed-off-by: Alex Ellis (OpenFaaS Ltd) <alexellis2@gmail.com>
This commit is contained in:
parent
9e5eb84236
commit
94210cc7f1
17
Gopkg.lock
generated
17
Gopkg.lock
generated
@ -641,6 +641,14 @@
|
||||
revision = "6eaf6f47437a6b4e2153a190160ef39a92c7eceb"
|
||||
version = "v1.23.0"
|
||||
|
||||
[[projects]]
|
||||
digest = "1:2d1fbdc6777e5408cabeb02bf336305e724b925ff4546ded0fa8715a7267922a"
|
||||
name = "gopkg.in/inf.v0"
|
||||
packages = ["."]
|
||||
pruneopts = "UT"
|
||||
revision = "d2d2541c53f18d2a059457998ce2876cc8e67cbf"
|
||||
version = "v0.9.1"
|
||||
|
||||
[[projects]]
|
||||
digest = "1:d7f1bd887dc650737a421b872ca883059580e9f8314d601f88025df4f4802dce"
|
||||
name = "gopkg.in/yaml.v2"
|
||||
@ -649,6 +657,14 @@
|
||||
revision = "0b1645d91e851e735d3e23330303ce81f70adbe3"
|
||||
version = "v2.3.0"
|
||||
|
||||
[[projects]]
|
||||
digest = "1:565af689f3e3d45e9cf8be8ff888b46ac96abc031c77361ce7c5c1228b2df006"
|
||||
name = "k8s.io/apimachinery"
|
||||
packages = ["pkg/api/resource"]
|
||||
pruneopts = "UT"
|
||||
revision = "b63a0c883fbfc313249150449400788e5589ef23"
|
||||
version = "v0.19.2"
|
||||
|
||||
[solve-meta]
|
||||
analyzer-name = "dep"
|
||||
analyzer-version = 1
|
||||
@ -686,6 +702,7 @@
|
||||
"github.com/vishvananda/netlink",
|
||||
"github.com/vishvananda/netns",
|
||||
"golang.org/x/sys/unix",
|
||||
"k8s.io/apimachinery/pkg/api/resource",
|
||||
]
|
||||
solver-name = "gps-cdcl"
|
||||
solver-version = 1
|
||||
|
28
vendor/gopkg.in/inf.v0/LICENSE
generated
vendored
Normal file
28
vendor/gopkg.in/inf.v0/LICENSE
generated
vendored
Normal file
@ -0,0 +1,28 @@
|
||||
Copyright (c) 2012 Péter Surányi. Portions Copyright (c) 2009 The Go
|
||||
Authors. All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
* Neither the name of Google Inc. nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
615
vendor/gopkg.in/inf.v0/dec.go
generated
vendored
Normal file
615
vendor/gopkg.in/inf.v0/dec.go
generated
vendored
Normal file
@ -0,0 +1,615 @@
|
||||
// Package inf (type inf.Dec) implements "infinite-precision" decimal
|
||||
// arithmetic.
|
||||
// "Infinite precision" describes two characteristics: practically unlimited
|
||||
// precision for decimal number representation and no support for calculating
|
||||
// with any specific fixed precision.
|
||||
// (Although there is no practical limit on precision, inf.Dec can only
|
||||
// represent finite decimals.)
|
||||
//
|
||||
// This package is currently in experimental stage and the API may change.
|
||||
//
|
||||
// This package does NOT support:
|
||||
// - rounding to specific precisions (as opposed to specific decimal positions)
|
||||
// - the notion of context (each rounding must be explicit)
|
||||
// - NaN and Inf values, and distinguishing between positive and negative zero
|
||||
// - conversions to and from float32/64 types
|
||||
//
|
||||
// Features considered for possible addition:
|
||||
// + formatting options
|
||||
// + Exp method
|
||||
// + combined operations such as AddRound/MulAdd etc
|
||||
// + exchanging data in decimal32/64/128 formats
|
||||
//
|
||||
package inf // import "gopkg.in/inf.v0"
|
||||
|
||||
// TODO:
|
||||
// - avoid excessive deep copying (quo and rounders)
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"math/big"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// A Dec represents a signed arbitrary-precision decimal.
|
||||
// It is a combination of a sign, an arbitrary-precision integer coefficient
|
||||
// value, and a signed fixed-precision exponent value.
|
||||
// The sign and the coefficient value are handled together as a signed value
|
||||
// and referred to as the unscaled value.
|
||||
// (Positive and negative zero values are not distinguished.)
|
||||
// Since the exponent is most commonly non-positive, it is handled in negated
|
||||
// form and referred to as scale.
|
||||
//
|
||||
// The mathematical value of a Dec equals:
|
||||
//
|
||||
// unscaled * 10**(-scale)
|
||||
//
|
||||
// Note that different Dec representations may have equal mathematical values.
|
||||
//
|
||||
// unscaled scale String()
|
||||
// -------------------------
|
||||
// 0 0 "0"
|
||||
// 0 2 "0.00"
|
||||
// 0 -2 "0"
|
||||
// 1 0 "1"
|
||||
// 100 2 "1.00"
|
||||
// 10 0 "10"
|
||||
// 1 -1 "10"
|
||||
//
|
||||
// The zero value for a Dec represents the value 0 with scale 0.
|
||||
//
|
||||
// Operations are typically performed through the *Dec type.
|
||||
// The semantics of the assignment operation "=" for "bare" Dec values is
|
||||
// undefined and should not be relied on.
|
||||
//
|
||||
// Methods are typically of the form:
|
||||
//
|
||||
// func (z *Dec) Op(x, y *Dec) *Dec
|
||||
//
|
||||
// and implement operations z = x Op y with the result as receiver; if it
|
||||
// is one of the operands it may be overwritten (and its memory reused).
|
||||
// To enable chaining of operations, the result is also returned. Methods
|
||||
// returning a result other than *Dec take one of the operands as the receiver.
|
||||
//
|
||||
// A "bare" Quo method (quotient / division operation) is not provided, as the
|
||||
// result is not always a finite decimal and thus in general cannot be
|
||||
// represented as a Dec.
|
||||
// Instead, in the common case when rounding is (potentially) necessary,
|
||||
// QuoRound should be used with a Scale and a Rounder.
|
||||
// QuoExact or QuoRound with RoundExact can be used in the special cases when it
|
||||
// is known that the result is always a finite decimal.
|
||||
//
|
||||
type Dec struct {
|
||||
unscaled big.Int
|
||||
scale Scale
|
||||
}
|
||||
|
||||
// Scale represents the type used for the scale of a Dec.
|
||||
type Scale int32
|
||||
|
||||
const scaleSize = 4 // bytes in a Scale value
|
||||
|
||||
// Scaler represents a method for obtaining the scale to use for the result of
|
||||
// an operation on x and y.
|
||||
type scaler interface {
|
||||
Scale(x *Dec, y *Dec) Scale
|
||||
}
|
||||
|
||||
var bigInt = [...]*big.Int{
|
||||
big.NewInt(0), big.NewInt(1), big.NewInt(2), big.NewInt(3), big.NewInt(4),
|
||||
big.NewInt(5), big.NewInt(6), big.NewInt(7), big.NewInt(8), big.NewInt(9),
|
||||
big.NewInt(10),
|
||||
}
|
||||
|
||||
var exp10cache [64]big.Int = func() [64]big.Int {
|
||||
e10, e10i := [64]big.Int{}, bigInt[1]
|
||||
for i := range e10 {
|
||||
e10[i].Set(e10i)
|
||||
e10i = new(big.Int).Mul(e10i, bigInt[10])
|
||||
}
|
||||
return e10
|
||||
}()
|
||||
|
||||
// NewDec allocates and returns a new Dec set to the given int64 unscaled value
|
||||
// and scale.
|
||||
func NewDec(unscaled int64, scale Scale) *Dec {
|
||||
return new(Dec).SetUnscaled(unscaled).SetScale(scale)
|
||||
}
|
||||
|
||||
// NewDecBig allocates and returns a new Dec set to the given *big.Int unscaled
|
||||
// value and scale.
|
||||
func NewDecBig(unscaled *big.Int, scale Scale) *Dec {
|
||||
return new(Dec).SetUnscaledBig(unscaled).SetScale(scale)
|
||||
}
|
||||
|
||||
// Scale returns the scale of x.
|
||||
func (x *Dec) Scale() Scale {
|
||||
return x.scale
|
||||
}
|
||||
|
||||
// Unscaled returns the unscaled value of x for u and true for ok when the
|
||||
// unscaled value can be represented as int64; otherwise it returns an undefined
|
||||
// int64 value for u and false for ok. Use x.UnscaledBig().Int64() to avoid
|
||||
// checking the validity of the value when the check is known to be redundant.
|
||||
func (x *Dec) Unscaled() (u int64, ok bool) {
|
||||
u = x.unscaled.Int64()
|
||||
var i big.Int
|
||||
ok = i.SetInt64(u).Cmp(&x.unscaled) == 0
|
||||
return
|
||||
}
|
||||
|
||||
// UnscaledBig returns the unscaled value of x as *big.Int.
|
||||
func (x *Dec) UnscaledBig() *big.Int {
|
||||
return &x.unscaled
|
||||
}
|
||||
|
||||
// SetScale sets the scale of z, with the unscaled value unchanged, and returns
|
||||
// z.
|
||||
// The mathematical value of the Dec changes as if it was multiplied by
|
||||
// 10**(oldscale-scale).
|
||||
func (z *Dec) SetScale(scale Scale) *Dec {
|
||||
z.scale = scale
|
||||
return z
|
||||
}
|
||||
|
||||
// SetUnscaled sets the unscaled value of z, with the scale unchanged, and
|
||||
// returns z.
|
||||
func (z *Dec) SetUnscaled(unscaled int64) *Dec {
|
||||
z.unscaled.SetInt64(unscaled)
|
||||
return z
|
||||
}
|
||||
|
||||
// SetUnscaledBig sets the unscaled value of z, with the scale unchanged, and
|
||||
// returns z.
|
||||
func (z *Dec) SetUnscaledBig(unscaled *big.Int) *Dec {
|
||||
z.unscaled.Set(unscaled)
|
||||
return z
|
||||
}
|
||||
|
||||
// Set sets z to the value of x and returns z.
|
||||
// It does nothing if z == x.
|
||||
func (z *Dec) Set(x *Dec) *Dec {
|
||||
if z != x {
|
||||
z.SetUnscaledBig(x.UnscaledBig())
|
||||
z.SetScale(x.Scale())
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// Sign returns:
|
||||
//
|
||||
// -1 if x < 0
|
||||
// 0 if x == 0
|
||||
// +1 if x > 0
|
||||
//
|
||||
func (x *Dec) Sign() int {
|
||||
return x.UnscaledBig().Sign()
|
||||
}
|
||||
|
||||
// Neg sets z to -x and returns z.
|
||||
func (z *Dec) Neg(x *Dec) *Dec {
|
||||
z.SetScale(x.Scale())
|
||||
z.UnscaledBig().Neg(x.UnscaledBig())
|
||||
return z
|
||||
}
|
||||
|
||||
// Cmp compares x and y and returns:
|
||||
//
|
||||
// -1 if x < y
|
||||
// 0 if x == y
|
||||
// +1 if x > y
|
||||
//
|
||||
func (x *Dec) Cmp(y *Dec) int {
|
||||
xx, yy := upscale(x, y)
|
||||
return xx.UnscaledBig().Cmp(yy.UnscaledBig())
|
||||
}
|
||||
|
||||
// Abs sets z to |x| (the absolute value of x) and returns z.
|
||||
func (z *Dec) Abs(x *Dec) *Dec {
|
||||
z.SetScale(x.Scale())
|
||||
z.UnscaledBig().Abs(x.UnscaledBig())
|
||||
return z
|
||||
}
|
||||
|
||||
// Add sets z to the sum x+y and returns z.
|
||||
// The scale of z is the greater of the scales of x and y.
|
||||
func (z *Dec) Add(x, y *Dec) *Dec {
|
||||
xx, yy := upscale(x, y)
|
||||
z.SetScale(xx.Scale())
|
||||
z.UnscaledBig().Add(xx.UnscaledBig(), yy.UnscaledBig())
|
||||
return z
|
||||
}
|
||||
|
||||
// Sub sets z to the difference x-y and returns z.
|
||||
// The scale of z is the greater of the scales of x and y.
|
||||
func (z *Dec) Sub(x, y *Dec) *Dec {
|
||||
xx, yy := upscale(x, y)
|
||||
z.SetScale(xx.Scale())
|
||||
z.UnscaledBig().Sub(xx.UnscaledBig(), yy.UnscaledBig())
|
||||
return z
|
||||
}
|
||||
|
||||
// Mul sets z to the product x*y and returns z.
|
||||
// The scale of z is the sum of the scales of x and y.
|
||||
func (z *Dec) Mul(x, y *Dec) *Dec {
|
||||
z.SetScale(x.Scale() + y.Scale())
|
||||
z.UnscaledBig().Mul(x.UnscaledBig(), y.UnscaledBig())
|
||||
return z
|
||||
}
|
||||
|
||||
// Round sets z to the value of x rounded to Scale s using Rounder r, and
|
||||
// returns z.
|
||||
func (z *Dec) Round(x *Dec, s Scale, r Rounder) *Dec {
|
||||
return z.QuoRound(x, NewDec(1, 0), s, r)
|
||||
}
|
||||
|
||||
// QuoRound sets z to the quotient x/y, rounded using the given Rounder to the
|
||||
// specified scale.
|
||||
//
|
||||
// If the rounder is RoundExact but the result can not be expressed exactly at
|
||||
// the specified scale, QuoRound returns nil, and the value of z is undefined.
|
||||
//
|
||||
// There is no corresponding Div method; the equivalent can be achieved through
|
||||
// the choice of Rounder used.
|
||||
//
|
||||
func (z *Dec) QuoRound(x, y *Dec, s Scale, r Rounder) *Dec {
|
||||
return z.quo(x, y, sclr{s}, r)
|
||||
}
|
||||
|
||||
func (z *Dec) quo(x, y *Dec, s scaler, r Rounder) *Dec {
|
||||
scl := s.Scale(x, y)
|
||||
var zzz *Dec
|
||||
if r.UseRemainder() {
|
||||
zz, rA, rB := new(Dec).quoRem(x, y, scl, true, new(big.Int), new(big.Int))
|
||||
zzz = r.Round(new(Dec), zz, rA, rB)
|
||||
} else {
|
||||
zz, _, _ := new(Dec).quoRem(x, y, scl, false, nil, nil)
|
||||
zzz = r.Round(new(Dec), zz, nil, nil)
|
||||
}
|
||||
if zzz == nil {
|
||||
return nil
|
||||
}
|
||||
return z.Set(zzz)
|
||||
}
|
||||
|
||||
// QuoExact sets z to the quotient x/y and returns z when x/y is a finite
|
||||
// decimal. Otherwise it returns nil and the value of z is undefined.
|
||||
//
|
||||
// The scale of a non-nil result is "x.Scale() - y.Scale()" or greater; it is
|
||||
// calculated so that the remainder will be zero whenever x/y is a finite
|
||||
// decimal.
|
||||
func (z *Dec) QuoExact(x, y *Dec) *Dec {
|
||||
return z.quo(x, y, scaleQuoExact{}, RoundExact)
|
||||
}
|
||||
|
||||
// quoRem sets z to the quotient x/y with the scale s, and if useRem is true,
|
||||
// it sets remNum and remDen to the numerator and denominator of the remainder.
|
||||
// It returns z, remNum and remDen.
|
||||
//
|
||||
// The remainder is normalized to the range -1 < r < 1 to simplify rounding;
|
||||
// that is, the results satisfy the following equation:
|
||||
//
|
||||
// x / y = z + (remNum/remDen) * 10**(-z.Scale())
|
||||
//
|
||||
// See Rounder for more details about rounding.
|
||||
//
|
||||
func (z *Dec) quoRem(x, y *Dec, s Scale, useRem bool,
|
||||
remNum, remDen *big.Int) (*Dec, *big.Int, *big.Int) {
|
||||
// difference (required adjustment) compared to "canonical" result scale
|
||||
shift := s - (x.Scale() - y.Scale())
|
||||
// pointers to adjusted unscaled dividend and divisor
|
||||
var ix, iy *big.Int
|
||||
switch {
|
||||
case shift > 0:
|
||||
// increased scale: decimal-shift dividend left
|
||||
ix = new(big.Int).Mul(x.UnscaledBig(), exp10(shift))
|
||||
iy = y.UnscaledBig()
|
||||
case shift < 0:
|
||||
// decreased scale: decimal-shift divisor left
|
||||
ix = x.UnscaledBig()
|
||||
iy = new(big.Int).Mul(y.UnscaledBig(), exp10(-shift))
|
||||
default:
|
||||
ix = x.UnscaledBig()
|
||||
iy = y.UnscaledBig()
|
||||
}
|
||||
// save a copy of iy in case it to be overwritten with the result
|
||||
iy2 := iy
|
||||
if iy == z.UnscaledBig() {
|
||||
iy2 = new(big.Int).Set(iy)
|
||||
}
|
||||
// set scale
|
||||
z.SetScale(s)
|
||||
// set unscaled
|
||||
if useRem {
|
||||
// Int division
|
||||
_, intr := z.UnscaledBig().QuoRem(ix, iy, new(big.Int))
|
||||
// set remainder
|
||||
remNum.Set(intr)
|
||||
remDen.Set(iy2)
|
||||
} else {
|
||||
z.UnscaledBig().Quo(ix, iy)
|
||||
}
|
||||
return z, remNum, remDen
|
||||
}
|
||||
|
||||
type sclr struct{ s Scale }
|
||||
|
||||
func (s sclr) Scale(x, y *Dec) Scale {
|
||||
return s.s
|
||||
}
|
||||
|
||||
type scaleQuoExact struct{}
|
||||
|
||||
func (sqe scaleQuoExact) Scale(x, y *Dec) Scale {
|
||||
rem := new(big.Rat).SetFrac(x.UnscaledBig(), y.UnscaledBig())
|
||||
f2, f5 := factor2(rem.Denom()), factor(rem.Denom(), bigInt[5])
|
||||
var f10 Scale
|
||||
if f2 > f5 {
|
||||
f10 = Scale(f2)
|
||||
} else {
|
||||
f10 = Scale(f5)
|
||||
}
|
||||
return x.Scale() - y.Scale() + f10
|
||||
}
|
||||
|
||||
func factor(n *big.Int, p *big.Int) int {
|
||||
// could be improved for large factors
|
||||
d, f := n, 0
|
||||
for {
|
||||
dd, dm := new(big.Int).DivMod(d, p, new(big.Int))
|
||||
if dm.Sign() == 0 {
|
||||
f++
|
||||
d = dd
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
func factor2(n *big.Int) int {
|
||||
// could be improved for large factors
|
||||
f := 0
|
||||
for ; n.Bit(f) == 0; f++ {
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
func upscale(a, b *Dec) (*Dec, *Dec) {
|
||||
if a.Scale() == b.Scale() {
|
||||
return a, b
|
||||
}
|
||||
if a.Scale() > b.Scale() {
|
||||
bb := b.rescale(a.Scale())
|
||||
return a, bb
|
||||
}
|
||||
aa := a.rescale(b.Scale())
|
||||
return aa, b
|
||||
}
|
||||
|
||||
func exp10(x Scale) *big.Int {
|
||||
if int(x) < len(exp10cache) {
|
||||
return &exp10cache[int(x)]
|
||||
}
|
||||
return new(big.Int).Exp(bigInt[10], big.NewInt(int64(x)), nil)
|
||||
}
|
||||
|
||||
func (x *Dec) rescale(newScale Scale) *Dec {
|
||||
shift := newScale - x.Scale()
|
||||
switch {
|
||||
case shift < 0:
|
||||
e := exp10(-shift)
|
||||
return NewDecBig(new(big.Int).Quo(x.UnscaledBig(), e), newScale)
|
||||
case shift > 0:
|
||||
e := exp10(shift)
|
||||
return NewDecBig(new(big.Int).Mul(x.UnscaledBig(), e), newScale)
|
||||
}
|
||||
return x
|
||||
}
|
||||
|
||||
var zeros = []byte("00000000000000000000000000000000" +
|
||||
"00000000000000000000000000000000")
|
||||
var lzeros = Scale(len(zeros))
|
||||
|
||||
func appendZeros(s []byte, n Scale) []byte {
|
||||
for i := Scale(0); i < n; i += lzeros {
|
||||
if n > i+lzeros {
|
||||
s = append(s, zeros...)
|
||||
} else {
|
||||
s = append(s, zeros[0:n-i]...)
|
||||
}
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func (x *Dec) String() string {
|
||||
if x == nil {
|
||||
return "<nil>"
|
||||
}
|
||||
scale := x.Scale()
|
||||
s := []byte(x.UnscaledBig().String())
|
||||
if scale <= 0 {
|
||||
if scale != 0 && x.unscaled.Sign() != 0 {
|
||||
s = appendZeros(s, -scale)
|
||||
}
|
||||
return string(s)
|
||||
}
|
||||
negbit := Scale(-((x.Sign() - 1) / 2))
|
||||
// scale > 0
|
||||
lens := Scale(len(s))
|
||||
if lens-negbit <= scale {
|
||||
ss := make([]byte, 0, scale+2)
|
||||
if negbit == 1 {
|
||||
ss = append(ss, '-')
|
||||
}
|
||||
ss = append(ss, '0', '.')
|
||||
ss = appendZeros(ss, scale-lens+negbit)
|
||||
ss = append(ss, s[negbit:]...)
|
||||
return string(ss)
|
||||
}
|
||||
// lens > scale
|
||||
ss := make([]byte, 0, lens+1)
|
||||
ss = append(ss, s[:lens-scale]...)
|
||||
ss = append(ss, '.')
|
||||
ss = append(ss, s[lens-scale:]...)
|
||||
return string(ss)
|
||||
}
|
||||
|
||||
// Format is a support routine for fmt.Formatter. It accepts the decimal
|
||||
// formats 'd' and 'f', and handles both equivalently.
|
||||
// Width, precision, flags and bases 2, 8, 16 are not supported.
|
||||
func (x *Dec) Format(s fmt.State, ch rune) {
|
||||
if ch != 'd' && ch != 'f' && ch != 'v' && ch != 's' {
|
||||
fmt.Fprintf(s, "%%!%c(dec.Dec=%s)", ch, x.String())
|
||||
return
|
||||
}
|
||||
fmt.Fprintf(s, x.String())
|
||||
}
|
||||
|
||||
func (z *Dec) scan(r io.RuneScanner) (*Dec, error) {
|
||||
unscaled := make([]byte, 0, 256) // collects chars of unscaled as bytes
|
||||
dp, dg := -1, -1 // indexes of decimal point, first digit
|
||||
loop:
|
||||
for {
|
||||
ch, _, err := r.ReadRune()
|
||||
if err == io.EOF {
|
||||
break loop
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
switch {
|
||||
case ch == '+' || ch == '-':
|
||||
if len(unscaled) > 0 || dp >= 0 { // must be first character
|
||||
r.UnreadRune()
|
||||
break loop
|
||||
}
|
||||
case ch == '.':
|
||||
if dp >= 0 {
|
||||
r.UnreadRune()
|
||||
break loop
|
||||
}
|
||||
dp = len(unscaled)
|
||||
continue // don't add to unscaled
|
||||
case ch >= '0' && ch <= '9':
|
||||
if dg == -1 {
|
||||
dg = len(unscaled)
|
||||
}
|
||||
default:
|
||||
r.UnreadRune()
|
||||
break loop
|
||||
}
|
||||
unscaled = append(unscaled, byte(ch))
|
||||
}
|
||||
if dg == -1 {
|
||||
return nil, fmt.Errorf("no digits read")
|
||||
}
|
||||
if dp >= 0 {
|
||||
z.SetScale(Scale(len(unscaled) - dp))
|
||||
} else {
|
||||
z.SetScale(0)
|
||||
}
|
||||
_, ok := z.UnscaledBig().SetString(string(unscaled), 10)
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("invalid decimal: %s", string(unscaled))
|
||||
}
|
||||
return z, nil
|
||||
}
|
||||
|
||||
// SetString sets z to the value of s, interpreted as a decimal (base 10),
|
||||
// and returns z and a boolean indicating success. The scale of z is the
|
||||
// number of digits after the decimal point (including any trailing 0s),
|
||||
// or 0 if there is no decimal point. If SetString fails, the value of z
|
||||
// is undefined but the returned value is nil.
|
||||
func (z *Dec) SetString(s string) (*Dec, bool) {
|
||||
r := strings.NewReader(s)
|
||||
_, err := z.scan(r)
|
||||
if err != nil {
|
||||
return nil, false
|
||||
}
|
||||
_, _, err = r.ReadRune()
|
||||
if err != io.EOF {
|
||||
return nil, false
|
||||
}
|
||||
// err == io.EOF => scan consumed all of s
|
||||
return z, true
|
||||
}
|
||||
|
||||
// Scan is a support routine for fmt.Scanner; it sets z to the value of
|
||||
// the scanned number. It accepts the decimal formats 'd' and 'f', and
|
||||
// handles both equivalently. Bases 2, 8, 16 are not supported.
|
||||
// The scale of z is the number of digits after the decimal point
|
||||
// (including any trailing 0s), or 0 if there is no decimal point.
|
||||
func (z *Dec) Scan(s fmt.ScanState, ch rune) error {
|
||||
if ch != 'd' && ch != 'f' && ch != 's' && ch != 'v' {
|
||||
return fmt.Errorf("Dec.Scan: invalid verb '%c'", ch)
|
||||
}
|
||||
s.SkipSpace()
|
||||
_, err := z.scan(s)
|
||||
return err
|
||||
}
|
||||
|
||||
// Gob encoding version
|
||||
const decGobVersion byte = 1
|
||||
|
||||
func scaleBytes(s Scale) []byte {
|
||||
buf := make([]byte, scaleSize)
|
||||
i := scaleSize
|
||||
for j := 0; j < scaleSize; j++ {
|
||||
i--
|
||||
buf[i] = byte(s)
|
||||
s >>= 8
|
||||
}
|
||||
return buf
|
||||
}
|
||||
|
||||
func scale(b []byte) (s Scale) {
|
||||
for j := 0; j < scaleSize; j++ {
|
||||
s <<= 8
|
||||
s |= Scale(b[j])
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// GobEncode implements the gob.GobEncoder interface.
|
||||
func (x *Dec) GobEncode() ([]byte, error) {
|
||||
buf, err := x.UnscaledBig().GobEncode()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
buf = append(append(buf, scaleBytes(x.Scale())...), decGobVersion)
|
||||
return buf, nil
|
||||
}
|
||||
|
||||
// GobDecode implements the gob.GobDecoder interface.
|
||||
func (z *Dec) GobDecode(buf []byte) error {
|
||||
if len(buf) == 0 {
|
||||
return fmt.Errorf("Dec.GobDecode: no data")
|
||||
}
|
||||
b := buf[len(buf)-1]
|
||||
if b != decGobVersion {
|
||||
return fmt.Errorf("Dec.GobDecode: encoding version %d not supported", b)
|
||||
}
|
||||
l := len(buf) - scaleSize - 1
|
||||
err := z.UnscaledBig().GobDecode(buf[:l])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
z.SetScale(scale(buf[l : l+scaleSize]))
|
||||
return nil
|
||||
}
|
||||
|
||||
// MarshalText implements the encoding.TextMarshaler interface.
|
||||
func (x *Dec) MarshalText() ([]byte, error) {
|
||||
return []byte(x.String()), nil
|
||||
}
|
||||
|
||||
// UnmarshalText implements the encoding.TextUnmarshaler interface.
|
||||
func (z *Dec) UnmarshalText(data []byte) error {
|
||||
_, ok := z.SetString(string(data))
|
||||
if !ok {
|
||||
return fmt.Errorf("invalid inf.Dec")
|
||||
}
|
||||
return nil
|
||||
}
|
145
vendor/gopkg.in/inf.v0/rounder.go
generated
vendored
Normal file
145
vendor/gopkg.in/inf.v0/rounder.go
generated
vendored
Normal file
@ -0,0 +1,145 @@
|
||||
package inf
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// Rounder represents a method for rounding the (possibly infinite decimal)
|
||||
// result of a division to a finite Dec. It is used by Dec.Round() and
|
||||
// Dec.Quo().
|
||||
//
|
||||
// See the Example for results of using each Rounder with some sample values.
|
||||
//
|
||||
type Rounder rounder
|
||||
|
||||
// See http://speleotrove.com/decimal/damodel.html#refround for more detailed
|
||||
// definitions of these rounding modes.
|
||||
var (
|
||||
RoundDown Rounder // towards 0
|
||||
RoundUp Rounder // away from 0
|
||||
RoundFloor Rounder // towards -infinity
|
||||
RoundCeil Rounder // towards +infinity
|
||||
RoundHalfDown Rounder // to nearest; towards 0 if same distance
|
||||
RoundHalfUp Rounder // to nearest; away from 0 if same distance
|
||||
RoundHalfEven Rounder // to nearest; even last digit if same distance
|
||||
)
|
||||
|
||||
// RoundExact is to be used in the case when rounding is not necessary.
|
||||
// When used with Quo or Round, it returns the result verbatim when it can be
|
||||
// expressed exactly with the given precision, and it returns nil otherwise.
|
||||
// QuoExact is a shorthand for using Quo with RoundExact.
|
||||
var RoundExact Rounder
|
||||
|
||||
type rounder interface {
|
||||
|
||||
// When UseRemainder() returns true, the Round() method is passed the
|
||||
// remainder of the division, expressed as the numerator and denominator of
|
||||
// a rational.
|
||||
UseRemainder() bool
|
||||
|
||||
// Round sets the rounded value of a quotient to z, and returns z.
|
||||
// quo is rounded down (truncated towards zero) to the scale obtained from
|
||||
// the Scaler in Quo().
|
||||
//
|
||||
// When the remainder is not used, remNum and remDen are nil.
|
||||
// When used, the remainder is normalized between -1 and 1; that is:
|
||||
//
|
||||
// -|remDen| < remNum < |remDen|
|
||||
//
|
||||
// remDen has the same sign as y, and remNum is zero or has the same sign
|
||||
// as x.
|
||||
Round(z, quo *Dec, remNum, remDen *big.Int) *Dec
|
||||
}
|
||||
|
||||
type rndr struct {
|
||||
useRem bool
|
||||
round func(z, quo *Dec, remNum, remDen *big.Int) *Dec
|
||||
}
|
||||
|
||||
func (r rndr) UseRemainder() bool {
|
||||
return r.useRem
|
||||
}
|
||||
|
||||
func (r rndr) Round(z, quo *Dec, remNum, remDen *big.Int) *Dec {
|
||||
return r.round(z, quo, remNum, remDen)
|
||||
}
|
||||
|
||||
var intSign = []*big.Int{big.NewInt(-1), big.NewInt(0), big.NewInt(1)}
|
||||
|
||||
func roundHalf(f func(c int, odd uint) (roundUp bool)) func(z, q *Dec, rA, rB *big.Int) *Dec {
|
||||
return func(z, q *Dec, rA, rB *big.Int) *Dec {
|
||||
z.Set(q)
|
||||
brA, brB := rA.BitLen(), rB.BitLen()
|
||||
if brA < brB-1 {
|
||||
// brA < brB-1 => |rA| < |rB/2|
|
||||
return z
|
||||
}
|
||||
roundUp := false
|
||||
srA, srB := rA.Sign(), rB.Sign()
|
||||
s := srA * srB
|
||||
if brA == brB-1 {
|
||||
rA2 := new(big.Int).Lsh(rA, 1)
|
||||
if s < 0 {
|
||||
rA2.Neg(rA2)
|
||||
}
|
||||
roundUp = f(rA2.Cmp(rB)*srB, z.UnscaledBig().Bit(0))
|
||||
} else {
|
||||
// brA > brB-1 => |rA| > |rB/2|
|
||||
roundUp = true
|
||||
}
|
||||
if roundUp {
|
||||
z.UnscaledBig().Add(z.UnscaledBig(), intSign[s+1])
|
||||
}
|
||||
return z
|
||||
}
|
||||
}
|
||||
|
||||
func init() {
|
||||
RoundExact = rndr{true,
|
||||
func(z, q *Dec, rA, rB *big.Int) *Dec {
|
||||
if rA.Sign() != 0 {
|
||||
return nil
|
||||
}
|
||||
return z.Set(q)
|
||||
}}
|
||||
RoundDown = rndr{false,
|
||||
func(z, q *Dec, rA, rB *big.Int) *Dec {
|
||||
return z.Set(q)
|
||||
}}
|
||||
RoundUp = rndr{true,
|
||||
func(z, q *Dec, rA, rB *big.Int) *Dec {
|
||||
z.Set(q)
|
||||
if rA.Sign() != 0 {
|
||||
z.UnscaledBig().Add(z.UnscaledBig(), intSign[rA.Sign()*rB.Sign()+1])
|
||||
}
|
||||
return z
|
||||
}}
|
||||
RoundFloor = rndr{true,
|
||||
func(z, q *Dec, rA, rB *big.Int) *Dec {
|
||||
z.Set(q)
|
||||
if rA.Sign()*rB.Sign() < 0 {
|
||||
z.UnscaledBig().Add(z.UnscaledBig(), intSign[0])
|
||||
}
|
||||
return z
|
||||
}}
|
||||
RoundCeil = rndr{true,
|
||||
func(z, q *Dec, rA, rB *big.Int) *Dec {
|
||||
z.Set(q)
|
||||
if rA.Sign()*rB.Sign() > 0 {
|
||||
z.UnscaledBig().Add(z.UnscaledBig(), intSign[2])
|
||||
}
|
||||
return z
|
||||
}}
|
||||
RoundHalfDown = rndr{true, roundHalf(
|
||||
func(c int, odd uint) bool {
|
||||
return c > 0
|
||||
})}
|
||||
RoundHalfUp = rndr{true, roundHalf(
|
||||
func(c int, odd uint) bool {
|
||||
return c >= 0
|
||||
})}
|
||||
RoundHalfEven = rndr{true, roundHalf(
|
||||
func(c int, odd uint) bool {
|
||||
return c > 0 || c == 0 && odd == 1
|
||||
})}
|
||||
}
|
202
vendor/k8s.io/apimachinery/LICENSE
generated
vendored
Normal file
202
vendor/k8s.io/apimachinery/LICENSE
generated
vendored
Normal file
@ -0,0 +1,202 @@
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
13
vendor/k8s.io/apimachinery/pkg/api/resource/OWNERS
generated
vendored
Normal file
13
vendor/k8s.io/apimachinery/pkg/api/resource/OWNERS
generated
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
# See the OWNERS docs at https://go.k8s.io/owners
|
||||
|
||||
reviewers:
|
||||
- thockin
|
||||
- lavalamp
|
||||
- smarterclayton
|
||||
- wojtek-t
|
||||
- derekwaynecarr
|
||||
- mikedanese
|
||||
- saad-ali
|
||||
- janetkuo
|
||||
- xiang90
|
||||
- mbohlool
|
299
vendor/k8s.io/apimachinery/pkg/api/resource/amount.go
generated
vendored
Normal file
299
vendor/k8s.io/apimachinery/pkg/api/resource/amount.go
generated
vendored
Normal file
@ -0,0 +1,299 @@
|
||||
/*
|
||||
Copyright 2014 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package resource
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
"strconv"
|
||||
|
||||
inf "gopkg.in/inf.v0"
|
||||
)
|
||||
|
||||
// Scale is used for getting and setting the base-10 scaled value.
|
||||
// Base-2 scales are omitted for mathematical simplicity.
|
||||
// See Quantity.ScaledValue for more details.
|
||||
type Scale int32
|
||||
|
||||
// infScale adapts a Scale value to an inf.Scale value.
|
||||
func (s Scale) infScale() inf.Scale {
|
||||
return inf.Scale(-s) // inf.Scale is upside-down
|
||||
}
|
||||
|
||||
const (
|
||||
Nano Scale = -9
|
||||
Micro Scale = -6
|
||||
Milli Scale = -3
|
||||
Kilo Scale = 3
|
||||
Mega Scale = 6
|
||||
Giga Scale = 9
|
||||
Tera Scale = 12
|
||||
Peta Scale = 15
|
||||
Exa Scale = 18
|
||||
)
|
||||
|
||||
var (
|
||||
Zero = int64Amount{}
|
||||
|
||||
// Used by quantity strings - treat as read only
|
||||
zeroBytes = []byte("0")
|
||||
)
|
||||
|
||||
// int64Amount represents a fixed precision numerator and arbitrary scale exponent. It is faster
|
||||
// than operations on inf.Dec for values that can be represented as int64.
|
||||
// +k8s:openapi-gen=true
|
||||
type int64Amount struct {
|
||||
value int64
|
||||
scale Scale
|
||||
}
|
||||
|
||||
// Sign returns 0 if the value is zero, -1 if it is less than 0, or 1 if it is greater than 0.
|
||||
func (a int64Amount) Sign() int {
|
||||
switch {
|
||||
case a.value == 0:
|
||||
return 0
|
||||
case a.value > 0:
|
||||
return 1
|
||||
default:
|
||||
return -1
|
||||
}
|
||||
}
|
||||
|
||||
// AsInt64 returns the current amount as an int64 at scale 0, or false if the value cannot be
|
||||
// represented in an int64 OR would result in a loss of precision. This method is intended as
|
||||
// an optimization to avoid calling AsDec.
|
||||
func (a int64Amount) AsInt64() (int64, bool) {
|
||||
if a.scale == 0 {
|
||||
return a.value, true
|
||||
}
|
||||
if a.scale < 0 {
|
||||
// TODO: attempt to reduce factors, although it is assumed that factors are reduced prior
|
||||
// to the int64Amount being created.
|
||||
return 0, false
|
||||
}
|
||||
return positiveScaleInt64(a.value, a.scale)
|
||||
}
|
||||
|
||||
// AsScaledInt64 returns an int64 representing the value of this amount at the specified scale,
|
||||
// rounding up, or false if that would result in overflow. (1e20).AsScaledInt64(1) would result
|
||||
// in overflow because 1e19 is not representable as an int64. Note that setting a scale larger
|
||||
// than the current value may result in loss of precision - i.e. (1e-6).AsScaledInt64(0) would
|
||||
// return 1, because 0.000001 is rounded up to 1.
|
||||
func (a int64Amount) AsScaledInt64(scale Scale) (result int64, ok bool) {
|
||||
if a.scale < scale {
|
||||
result, _ = negativeScaleInt64(a.value, scale-a.scale)
|
||||
return result, true
|
||||
}
|
||||
return positiveScaleInt64(a.value, a.scale-scale)
|
||||
}
|
||||
|
||||
// AsDec returns an inf.Dec representation of this value.
|
||||
func (a int64Amount) AsDec() *inf.Dec {
|
||||
var base inf.Dec
|
||||
base.SetUnscaled(a.value)
|
||||
base.SetScale(inf.Scale(-a.scale))
|
||||
return &base
|
||||
}
|
||||
|
||||
// Cmp returns 0 if a and b are equal, 1 if a is greater than b, or -1 if a is less than b.
|
||||
func (a int64Amount) Cmp(b int64Amount) int {
|
||||
switch {
|
||||
case a.scale == b.scale:
|
||||
// compare only the unscaled portion
|
||||
case a.scale > b.scale:
|
||||
result, remainder, exact := divideByScaleInt64(b.value, a.scale-b.scale)
|
||||
if !exact {
|
||||
return a.AsDec().Cmp(b.AsDec())
|
||||
}
|
||||
if result == a.value {
|
||||
switch {
|
||||
case remainder == 0:
|
||||
return 0
|
||||
case remainder > 0:
|
||||
return -1
|
||||
default:
|
||||
return 1
|
||||
}
|
||||
}
|
||||
b.value = result
|
||||
default:
|
||||
result, remainder, exact := divideByScaleInt64(a.value, b.scale-a.scale)
|
||||
if !exact {
|
||||
return a.AsDec().Cmp(b.AsDec())
|
||||
}
|
||||
if result == b.value {
|
||||
switch {
|
||||
case remainder == 0:
|
||||
return 0
|
||||
case remainder > 0:
|
||||
return 1
|
||||
default:
|
||||
return -1
|
||||
}
|
||||
}
|
||||
a.value = result
|
||||
}
|
||||
|
||||
switch {
|
||||
case a.value == b.value:
|
||||
return 0
|
||||
case a.value < b.value:
|
||||
return -1
|
||||
default:
|
||||
return 1
|
||||
}
|
||||
}
|
||||
|
||||
// Add adds two int64Amounts together, matching scales. It will return false and not mutate
|
||||
// a if overflow or underflow would result.
|
||||
func (a *int64Amount) Add(b int64Amount) bool {
|
||||
switch {
|
||||
case b.value == 0:
|
||||
return true
|
||||
case a.value == 0:
|
||||
a.value = b.value
|
||||
a.scale = b.scale
|
||||
return true
|
||||
case a.scale == b.scale:
|
||||
c, ok := int64Add(a.value, b.value)
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
a.value = c
|
||||
case a.scale > b.scale:
|
||||
c, ok := positiveScaleInt64(a.value, a.scale-b.scale)
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
c, ok = int64Add(c, b.value)
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
a.scale = b.scale
|
||||
a.value = c
|
||||
default:
|
||||
c, ok := positiveScaleInt64(b.value, b.scale-a.scale)
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
c, ok = int64Add(a.value, c)
|
||||
if !ok {
|
||||
return false
|
||||
}
|
||||
a.value = c
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Sub removes the value of b from the current amount, or returns false if underflow would result.
|
||||
func (a *int64Amount) Sub(b int64Amount) bool {
|
||||
return a.Add(int64Amount{value: -b.value, scale: b.scale})
|
||||
}
|
||||
|
||||
// AsScale adjusts this amount to set a minimum scale, rounding up, and returns true iff no precision
|
||||
// was lost. (1.1e5).AsScale(5) would return 1.1e5, but (1.1e5).AsScale(6) would return 1e6.
|
||||
func (a int64Amount) AsScale(scale Scale) (int64Amount, bool) {
|
||||
if a.scale >= scale {
|
||||
return a, true
|
||||
}
|
||||
result, exact := negativeScaleInt64(a.value, scale-a.scale)
|
||||
return int64Amount{value: result, scale: scale}, exact
|
||||
}
|
||||
|
||||
// AsCanonicalBytes accepts a buffer to write the base-10 string value of this field to, and returns
|
||||
// either that buffer or a larger buffer and the current exponent of the value. The value is adjusted
|
||||
// until the exponent is a multiple of 3 - i.e. 1.1e5 would return "110", 3.
|
||||
func (a int64Amount) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
|
||||
mantissa := a.value
|
||||
exponent = int32(a.scale)
|
||||
|
||||
amount, times := removeInt64Factors(mantissa, 10)
|
||||
exponent += int32(times)
|
||||
|
||||
// make sure exponent is a multiple of 3
|
||||
var ok bool
|
||||
switch exponent % 3 {
|
||||
case 1, -2:
|
||||
amount, ok = int64MultiplyScale10(amount)
|
||||
if !ok {
|
||||
return infDecAmount{a.AsDec()}.AsCanonicalBytes(out)
|
||||
}
|
||||
exponent = exponent - 1
|
||||
case 2, -1:
|
||||
amount, ok = int64MultiplyScale100(amount)
|
||||
if !ok {
|
||||
return infDecAmount{a.AsDec()}.AsCanonicalBytes(out)
|
||||
}
|
||||
exponent = exponent - 2
|
||||
}
|
||||
return strconv.AppendInt(out, amount, 10), exponent
|
||||
}
|
||||
|
||||
// AsCanonicalBase1024Bytes accepts a buffer to write the base-1024 string value of this field to, and returns
|
||||
// either that buffer or a larger buffer and the current exponent of the value. 2048 is 2 * 1024 ^ 1 and would
|
||||
// return []byte("2048"), 1.
|
||||
func (a int64Amount) AsCanonicalBase1024Bytes(out []byte) (result []byte, exponent int32) {
|
||||
value, ok := a.AsScaledInt64(0)
|
||||
if !ok {
|
||||
return infDecAmount{a.AsDec()}.AsCanonicalBase1024Bytes(out)
|
||||
}
|
||||
amount, exponent := removeInt64Factors(value, 1024)
|
||||
return strconv.AppendInt(out, amount, 10), exponent
|
||||
}
|
||||
|
||||
// infDecAmount implements common operations over an inf.Dec that are specific to the quantity
|
||||
// representation.
|
||||
type infDecAmount struct {
|
||||
*inf.Dec
|
||||
}
|
||||
|
||||
// AsScale adjusts this amount to set a minimum scale, rounding up, and returns true iff no precision
|
||||
// was lost. (1.1e5).AsScale(5) would return 1.1e5, but (1.1e5).AsScale(6) would return 1e6.
|
||||
func (a infDecAmount) AsScale(scale Scale) (infDecAmount, bool) {
|
||||
tmp := &inf.Dec{}
|
||||
tmp.Round(a.Dec, scale.infScale(), inf.RoundUp)
|
||||
return infDecAmount{tmp}, tmp.Cmp(a.Dec) == 0
|
||||
}
|
||||
|
||||
// AsCanonicalBytes accepts a buffer to write the base-10 string value of this field to, and returns
|
||||
// either that buffer or a larger buffer and the current exponent of the value. The value is adjusted
|
||||
// until the exponent is a multiple of 3 - i.e. 1.1e5 would return "110", 3.
|
||||
func (a infDecAmount) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
|
||||
mantissa := a.Dec.UnscaledBig()
|
||||
exponent = int32(-a.Dec.Scale())
|
||||
amount := big.NewInt(0).Set(mantissa)
|
||||
// move all factors of 10 into the exponent for easy reasoning
|
||||
amount, times := removeBigIntFactors(amount, bigTen)
|
||||
exponent += times
|
||||
|
||||
// make sure exponent is a multiple of 3
|
||||
for exponent%3 != 0 {
|
||||
amount.Mul(amount, bigTen)
|
||||
exponent--
|
||||
}
|
||||
|
||||
return append(out, amount.String()...), exponent
|
||||
}
|
||||
|
||||
// AsCanonicalBase1024Bytes accepts a buffer to write the base-1024 string value of this field to, and returns
|
||||
// either that buffer or a larger buffer and the current exponent of the value. 2048 is 2 * 1024 ^ 1 and would
|
||||
// return []byte("2048"), 1.
|
||||
func (a infDecAmount) AsCanonicalBase1024Bytes(out []byte) (result []byte, exponent int32) {
|
||||
tmp := &inf.Dec{}
|
||||
tmp.Round(a.Dec, 0, inf.RoundUp)
|
||||
amount, exponent := removeBigIntFactors(tmp.UnscaledBig(), big1024)
|
||||
return append(out, amount.String()...), exponent
|
||||
}
|
89
vendor/k8s.io/apimachinery/pkg/api/resource/generated.pb.go
generated
vendored
Normal file
89
vendor/k8s.io/apimachinery/pkg/api/resource/generated.pb.go
generated
vendored
Normal file
@ -0,0 +1,89 @@
|
||||
/*
|
||||
Copyright The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
// Code generated by protoc-gen-gogo. DO NOT EDIT.
|
||||
// source: k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/api/resource/generated.proto
|
||||
|
||||
package resource
|
||||
|
||||
import (
|
||||
fmt "fmt"
|
||||
|
||||
math "math"
|
||||
|
||||
proto "github.com/gogo/protobuf/proto"
|
||||
)
|
||||
|
||||
// Reference imports to suppress errors if they are not otherwise used.
|
||||
var _ = proto.Marshal
|
||||
var _ = fmt.Errorf
|
||||
var _ = math.Inf
|
||||
|
||||
// This is a compile-time assertion to ensure that this generated file
|
||||
// is compatible with the proto package it is being compiled against.
|
||||
// A compilation error at this line likely means your copy of the
|
||||
// proto package needs to be updated.
|
||||
const _ = proto.GoGoProtoPackageIsVersion3 // please upgrade the proto package
|
||||
|
||||
func (m *Quantity) Reset() { *m = Quantity{} }
|
||||
func (*Quantity) ProtoMessage() {}
|
||||
func (*Quantity) Descriptor() ([]byte, []int) {
|
||||
return fileDescriptor_612bba87bd70906c, []int{0}
|
||||
}
|
||||
func (m *Quantity) XXX_Unmarshal(b []byte) error {
|
||||
return xxx_messageInfo_Quantity.Unmarshal(m, b)
|
||||
}
|
||||
func (m *Quantity) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
|
||||
return xxx_messageInfo_Quantity.Marshal(b, m, deterministic)
|
||||
}
|
||||
func (m *Quantity) XXX_Merge(src proto.Message) {
|
||||
xxx_messageInfo_Quantity.Merge(m, src)
|
||||
}
|
||||
func (m *Quantity) XXX_Size() int {
|
||||
return xxx_messageInfo_Quantity.Size(m)
|
||||
}
|
||||
func (m *Quantity) XXX_DiscardUnknown() {
|
||||
xxx_messageInfo_Quantity.DiscardUnknown(m)
|
||||
}
|
||||
|
||||
var xxx_messageInfo_Quantity proto.InternalMessageInfo
|
||||
|
||||
func init() {
|
||||
proto.RegisterType((*Quantity)(nil), "k8s.io.apimachinery.pkg.api.resource.Quantity")
|
||||
}
|
||||
|
||||
func init() {
|
||||
proto.RegisterFile("k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/api/resource/generated.proto", fileDescriptor_612bba87bd70906c)
|
||||
}
|
||||
|
||||
var fileDescriptor_612bba87bd70906c = []byte{
|
||||
// 237 bytes of a gzipped FileDescriptorProto
|
||||
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0x4c, 0x8e, 0xb1, 0x4e, 0xc3, 0x30,
|
||||
0x10, 0x40, 0xcf, 0x0b, 0x2a, 0x19, 0x2b, 0x84, 0x10, 0xc3, 0xa5, 0x42, 0x0c, 0x2c, 0xd8, 0x6b,
|
||||
0xc5, 0xc8, 0xce, 0x00, 0x23, 0x5b, 0x92, 0x1e, 0xae, 0x15, 0xd5, 0x8e, 0x2e, 0x36, 0x52, 0xb7,
|
||||
0x8e, 0x8c, 0x1d, 0x19, 0x9b, 0xbf, 0xe9, 0xd8, 0xb1, 0x03, 0x03, 0x31, 0x3f, 0x82, 0xea, 0x36,
|
||||
0x52, 0xb7, 0x7b, 0xef, 0xf4, 0x4e, 0x97, 0xbd, 0xd4, 0xd3, 0x56, 0x1a, 0xa7, 0xea, 0x50, 0x12,
|
||||
0x5b, 0xf2, 0xd4, 0xaa, 0x4f, 0xb2, 0x33, 0xc7, 0xea, 0xb4, 0x28, 0x1a, 0xb3, 0x28, 0xaa, 0xb9,
|
||||
0xb1, 0xc4, 0x4b, 0xd5, 0xd4, 0xfa, 0x20, 0x14, 0x53, 0xeb, 0x02, 0x57, 0xa4, 0x34, 0x59, 0xe2,
|
||||
0xc2, 0xd3, 0x4c, 0x36, 0xec, 0xbc, 0x1b, 0xdf, 0x1f, 0x2b, 0x79, 0x5e, 0xc9, 0xa6, 0xd6, 0x07,
|
||||
0x21, 0x87, 0xea, 0xf6, 0x51, 0x1b, 0x3f, 0x0f, 0xa5, 0xac, 0xdc, 0x42, 0x69, 0xa7, 0x9d, 0x4a,
|
||||
0x71, 0x19, 0x3e, 0x12, 0x25, 0x48, 0xd3, 0xf1, 0xe8, 0xdd, 0x34, 0x1b, 0xbd, 0x86, 0xc2, 0x7a,
|
||||
0xe3, 0x97, 0xe3, 0xeb, 0xec, 0xa2, 0xf5, 0x6c, 0xac, 0xbe, 0x11, 0x13, 0xf1, 0x70, 0xf9, 0x76,
|
||||
0xa2, 0xa7, 0xab, 0xef, 0x4d, 0x0e, 0x5f, 0x5d, 0x0e, 0xeb, 0x2e, 0x87, 0x4d, 0x97, 0xc3, 0xea,
|
||||
0x67, 0x02, 0xcf, 0x72, 0xdb, 0x23, 0xec, 0x7a, 0x84, 0x7d, 0x8f, 0xb0, 0x8a, 0x28, 0xb6, 0x11,
|
||||
0xc5, 0x2e, 0xa2, 0xd8, 0x47, 0x14, 0xbf, 0x11, 0xc5, 0xfa, 0x0f, 0xe1, 0x7d, 0x34, 0x3c, 0xf6,
|
||||
0x1f, 0x00, 0x00, 0xff, 0xff, 0x3c, 0x08, 0x88, 0x49, 0x0e, 0x01, 0x00, 0x00,
|
||||
}
|
88
vendor/k8s.io/apimachinery/pkg/api/resource/generated.proto
generated
vendored
Normal file
88
vendor/k8s.io/apimachinery/pkg/api/resource/generated.proto
generated
vendored
Normal file
@ -0,0 +1,88 @@
|
||||
/*
|
||||
Copyright The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
|
||||
// This file was autogenerated by go-to-protobuf. Do not edit it manually!
|
||||
|
||||
syntax = 'proto2';
|
||||
|
||||
package k8s.io.apimachinery.pkg.api.resource;
|
||||
|
||||
// Package-wide variables from generator "generated".
|
||||
option go_package = "resource";
|
||||
|
||||
// Quantity is a fixed-point representation of a number.
|
||||
// It provides convenient marshaling/unmarshaling in JSON and YAML,
|
||||
// in addition to String() and AsInt64() accessors.
|
||||
//
|
||||
// The serialization format is:
|
||||
//
|
||||
// <quantity> ::= <signedNumber><suffix>
|
||||
// (Note that <suffix> may be empty, from the "" case in <decimalSI>.)
|
||||
// <digit> ::= 0 | 1 | ... | 9
|
||||
// <digits> ::= <digit> | <digit><digits>
|
||||
// <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
|
||||
// <sign> ::= "+" | "-"
|
||||
// <signedNumber> ::= <number> | <sign><number>
|
||||
// <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI>
|
||||
// <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei
|
||||
// (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
|
||||
// <decimalSI> ::= m | "" | k | M | G | T | P | E
|
||||
// (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
|
||||
// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
|
||||
//
|
||||
// No matter which of the three exponent forms is used, no quantity may represent
|
||||
// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
|
||||
// places. Numbers larger or more precise will be capped or rounded up.
|
||||
// (E.g.: 0.1m will rounded up to 1m.)
|
||||
// This may be extended in the future if we require larger or smaller quantities.
|
||||
//
|
||||
// When a Quantity is parsed from a string, it will remember the type of suffix
|
||||
// it had, and will use the same type again when it is serialized.
|
||||
//
|
||||
// Before serializing, Quantity will be put in "canonical form".
|
||||
// This means that Exponent/suffix will be adjusted up or down (with a
|
||||
// corresponding increase or decrease in Mantissa) such that:
|
||||
// a. No precision is lost
|
||||
// b. No fractional digits will be emitted
|
||||
// c. The exponent (or suffix) is as large as possible.
|
||||
// The sign will be omitted unless the number is negative.
|
||||
//
|
||||
// Examples:
|
||||
// 1.5 will be serialized as "1500m"
|
||||
// 1.5Gi will be serialized as "1536Mi"
|
||||
//
|
||||
// Note that the quantity will NEVER be internally represented by a
|
||||
// floating point number. That is the whole point of this exercise.
|
||||
//
|
||||
// Non-canonical values will still parse as long as they are well formed,
|
||||
// but will be re-emitted in their canonical form. (So always use canonical
|
||||
// form, or don't diff.)
|
||||
//
|
||||
// This format is intended to make it difficult to use these numbers without
|
||||
// writing some sort of special handling code in the hopes that that will
|
||||
// cause implementors to also use a fixed point implementation.
|
||||
//
|
||||
// +protobuf=true
|
||||
// +protobuf.embed=string
|
||||
// +protobuf.options.marshal=false
|
||||
// +protobuf.options.(gogoproto.goproto_stringer)=false
|
||||
// +k8s:deepcopy-gen=true
|
||||
// +k8s:openapi-gen=true
|
||||
message Quantity {
|
||||
optional string string = 1;
|
||||
}
|
||||
|
310
vendor/k8s.io/apimachinery/pkg/api/resource/math.go
generated
vendored
Normal file
310
vendor/k8s.io/apimachinery/pkg/api/resource/math.go
generated
vendored
Normal file
@ -0,0 +1,310 @@
|
||||
/*
|
||||
Copyright 2014 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package resource
|
||||
|
||||
import (
|
||||
"math/big"
|
||||
|
||||
inf "gopkg.in/inf.v0"
|
||||
)
|
||||
|
||||
const (
|
||||
// maxInt64Factors is the highest value that will be checked when removing factors of 10 from an int64.
|
||||
// It is also the maximum decimal digits that can be represented with an int64.
|
||||
maxInt64Factors = 18
|
||||
)
|
||||
|
||||
var (
|
||||
// Commonly needed big.Int values-- treat as read only!
|
||||
bigTen = big.NewInt(10)
|
||||
bigZero = big.NewInt(0)
|
||||
bigOne = big.NewInt(1)
|
||||
bigThousand = big.NewInt(1000)
|
||||
big1024 = big.NewInt(1024)
|
||||
|
||||
// Commonly needed inf.Dec values-- treat as read only!
|
||||
decZero = inf.NewDec(0, 0)
|
||||
decOne = inf.NewDec(1, 0)
|
||||
|
||||
// Largest (in magnitude) number allowed.
|
||||
maxAllowed = infDecAmount{inf.NewDec((1<<63)-1, 0)} // == max int64
|
||||
|
||||
// The maximum value we can represent milli-units for.
|
||||
// Compare with the return value of Quantity.Value() to
|
||||
// see if it's safe to use Quantity.MilliValue().
|
||||
MaxMilliValue = int64(((1 << 63) - 1) / 1000)
|
||||
)
|
||||
|
||||
const mostNegative = -(mostPositive + 1)
|
||||
const mostPositive = 1<<63 - 1
|
||||
|
||||
// int64Add returns a+b, or false if that would overflow int64.
|
||||
func int64Add(a, b int64) (int64, bool) {
|
||||
c := a + b
|
||||
switch {
|
||||
case a > 0 && b > 0:
|
||||
if c < 0 {
|
||||
return 0, false
|
||||
}
|
||||
case a < 0 && b < 0:
|
||||
if c > 0 {
|
||||
return 0, false
|
||||
}
|
||||
if a == mostNegative && b == mostNegative {
|
||||
return 0, false
|
||||
}
|
||||
}
|
||||
return c, true
|
||||
}
|
||||
|
||||
// int64Multiply returns a*b, or false if that would overflow or underflow int64.
|
||||
func int64Multiply(a, b int64) (int64, bool) {
|
||||
if a == 0 || b == 0 || a == 1 || b == 1 {
|
||||
return a * b, true
|
||||
}
|
||||
if a == mostNegative || b == mostNegative {
|
||||
return 0, false
|
||||
}
|
||||
c := a * b
|
||||
return c, c/b == a
|
||||
}
|
||||
|
||||
// int64MultiplyScale returns a*b, assuming b is greater than one, or false if that would overflow or underflow int64.
|
||||
// Use when b is known to be greater than one.
|
||||
func int64MultiplyScale(a int64, b int64) (int64, bool) {
|
||||
if a == 0 || a == 1 {
|
||||
return a * b, true
|
||||
}
|
||||
if a == mostNegative && b != 1 {
|
||||
return 0, false
|
||||
}
|
||||
c := a * b
|
||||
return c, c/b == a
|
||||
}
|
||||
|
||||
// int64MultiplyScale10 multiplies a by 10, or returns false if that would overflow. This method is faster than
|
||||
// int64Multiply(a, 10) because the compiler can optimize constant factor multiplication.
|
||||
func int64MultiplyScale10(a int64) (int64, bool) {
|
||||
if a == 0 || a == 1 {
|
||||
return a * 10, true
|
||||
}
|
||||
if a == mostNegative {
|
||||
return 0, false
|
||||
}
|
||||
c := a * 10
|
||||
return c, c/10 == a
|
||||
}
|
||||
|
||||
// int64MultiplyScale100 multiplies a by 100, or returns false if that would overflow. This method is faster than
|
||||
// int64Multiply(a, 100) because the compiler can optimize constant factor multiplication.
|
||||
func int64MultiplyScale100(a int64) (int64, bool) {
|
||||
if a == 0 || a == 1 {
|
||||
return a * 100, true
|
||||
}
|
||||
if a == mostNegative {
|
||||
return 0, false
|
||||
}
|
||||
c := a * 100
|
||||
return c, c/100 == a
|
||||
}
|
||||
|
||||
// int64MultiplyScale1000 multiplies a by 1000, or returns false if that would overflow. This method is faster than
|
||||
// int64Multiply(a, 1000) because the compiler can optimize constant factor multiplication.
|
||||
func int64MultiplyScale1000(a int64) (int64, bool) {
|
||||
if a == 0 || a == 1 {
|
||||
return a * 1000, true
|
||||
}
|
||||
if a == mostNegative {
|
||||
return 0, false
|
||||
}
|
||||
c := a * 1000
|
||||
return c, c/1000 == a
|
||||
}
|
||||
|
||||
// positiveScaleInt64 multiplies base by 10^scale, returning false if the
|
||||
// value overflows. Passing a negative scale is undefined.
|
||||
func positiveScaleInt64(base int64, scale Scale) (int64, bool) {
|
||||
switch scale {
|
||||
case 0:
|
||||
return base, true
|
||||
case 1:
|
||||
return int64MultiplyScale10(base)
|
||||
case 2:
|
||||
return int64MultiplyScale100(base)
|
||||
case 3:
|
||||
return int64MultiplyScale1000(base)
|
||||
case 6:
|
||||
return int64MultiplyScale(base, 1000000)
|
||||
case 9:
|
||||
return int64MultiplyScale(base, 1000000000)
|
||||
default:
|
||||
value := base
|
||||
var ok bool
|
||||
for i := Scale(0); i < scale; i++ {
|
||||
if value, ok = int64MultiplyScale(value, 10); !ok {
|
||||
return 0, false
|
||||
}
|
||||
}
|
||||
return value, true
|
||||
}
|
||||
}
|
||||
|
||||
// negativeScaleInt64 reduces base by the provided scale, rounding up, until the
|
||||
// value is zero or the scale is reached. Passing a negative scale is undefined.
|
||||
// The value returned, if not exact, is rounded away from zero.
|
||||
func negativeScaleInt64(base int64, scale Scale) (result int64, exact bool) {
|
||||
if scale == 0 {
|
||||
return base, true
|
||||
}
|
||||
|
||||
value := base
|
||||
var fraction bool
|
||||
for i := Scale(0); i < scale; i++ {
|
||||
if !fraction && value%10 != 0 {
|
||||
fraction = true
|
||||
}
|
||||
value = value / 10
|
||||
if value == 0 {
|
||||
if fraction {
|
||||
if base > 0 {
|
||||
return 1, false
|
||||
}
|
||||
return -1, false
|
||||
}
|
||||
return 0, true
|
||||
}
|
||||
}
|
||||
if fraction {
|
||||
if base > 0 {
|
||||
value++
|
||||
} else {
|
||||
value--
|
||||
}
|
||||
}
|
||||
return value, !fraction
|
||||
}
|
||||
|
||||
func pow10Int64(b int64) int64 {
|
||||
switch b {
|
||||
case 0:
|
||||
return 1
|
||||
case 1:
|
||||
return 10
|
||||
case 2:
|
||||
return 100
|
||||
case 3:
|
||||
return 1000
|
||||
case 4:
|
||||
return 10000
|
||||
case 5:
|
||||
return 100000
|
||||
case 6:
|
||||
return 1000000
|
||||
case 7:
|
||||
return 10000000
|
||||
case 8:
|
||||
return 100000000
|
||||
case 9:
|
||||
return 1000000000
|
||||
case 10:
|
||||
return 10000000000
|
||||
case 11:
|
||||
return 100000000000
|
||||
case 12:
|
||||
return 1000000000000
|
||||
case 13:
|
||||
return 10000000000000
|
||||
case 14:
|
||||
return 100000000000000
|
||||
case 15:
|
||||
return 1000000000000000
|
||||
case 16:
|
||||
return 10000000000000000
|
||||
case 17:
|
||||
return 100000000000000000
|
||||
case 18:
|
||||
return 1000000000000000000
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
// negativeScaleInt64 returns the result of dividing base by scale * 10 and the remainder, or
|
||||
// false if no such division is possible. Dividing by negative scales is undefined.
|
||||
func divideByScaleInt64(base int64, scale Scale) (result, remainder int64, exact bool) {
|
||||
if scale == 0 {
|
||||
return base, 0, true
|
||||
}
|
||||
// the max scale representable in base 10 in an int64 is 18 decimal places
|
||||
if scale >= 18 {
|
||||
return 0, base, false
|
||||
}
|
||||
divisor := pow10Int64(int64(scale))
|
||||
return base / divisor, base % divisor, true
|
||||
}
|
||||
|
||||
// removeInt64Factors divides in a loop; the return values have the property that
|
||||
// value == result * base ^ scale
|
||||
func removeInt64Factors(value int64, base int64) (result int64, times int32) {
|
||||
times = 0
|
||||
result = value
|
||||
negative := result < 0
|
||||
if negative {
|
||||
result = -result
|
||||
}
|
||||
switch base {
|
||||
// allow the compiler to optimize the common cases
|
||||
case 10:
|
||||
for result >= 10 && result%10 == 0 {
|
||||
times++
|
||||
result = result / 10
|
||||
}
|
||||
// allow the compiler to optimize the common cases
|
||||
case 1024:
|
||||
for result >= 1024 && result%1024 == 0 {
|
||||
times++
|
||||
result = result / 1024
|
||||
}
|
||||
default:
|
||||
for result >= base && result%base == 0 {
|
||||
times++
|
||||
result = result / base
|
||||
}
|
||||
}
|
||||
if negative {
|
||||
result = -result
|
||||
}
|
||||
return result, times
|
||||
}
|
||||
|
||||
// removeBigIntFactors divides in a loop; the return values have the property that
|
||||
// d == result * factor ^ times
|
||||
// d may be modified in place.
|
||||
// If d == 0, then the return values will be (0, 0)
|
||||
func removeBigIntFactors(d, factor *big.Int) (result *big.Int, times int32) {
|
||||
q := big.NewInt(0)
|
||||
m := big.NewInt(0)
|
||||
for d.Cmp(bigZero) != 0 {
|
||||
q.DivMod(d, factor, m)
|
||||
if m.Cmp(bigZero) != 0 {
|
||||
break
|
||||
}
|
||||
times++
|
||||
d, q = q, d
|
||||
}
|
||||
return d, times
|
||||
}
|
733
vendor/k8s.io/apimachinery/pkg/api/resource/quantity.go
generated
vendored
Normal file
733
vendor/k8s.io/apimachinery/pkg/api/resource/quantity.go
generated
vendored
Normal file
@ -0,0 +1,733 @@
|
||||
/*
|
||||
Copyright 2014 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package resource
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"errors"
|
||||
"fmt"
|
||||
"math/big"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
inf "gopkg.in/inf.v0"
|
||||
)
|
||||
|
||||
// Quantity is a fixed-point representation of a number.
|
||||
// It provides convenient marshaling/unmarshaling in JSON and YAML,
|
||||
// in addition to String() and AsInt64() accessors.
|
||||
//
|
||||
// The serialization format is:
|
||||
//
|
||||
// <quantity> ::= <signedNumber><suffix>
|
||||
// (Note that <suffix> may be empty, from the "" case in <decimalSI>.)
|
||||
// <digit> ::= 0 | 1 | ... | 9
|
||||
// <digits> ::= <digit> | <digit><digits>
|
||||
// <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
|
||||
// <sign> ::= "+" | "-"
|
||||
// <signedNumber> ::= <number> | <sign><number>
|
||||
// <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI>
|
||||
// <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei
|
||||
// (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
|
||||
// <decimalSI> ::= m | "" | k | M | G | T | P | E
|
||||
// (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
|
||||
// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
|
||||
//
|
||||
// No matter which of the three exponent forms is used, no quantity may represent
|
||||
// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
|
||||
// places. Numbers larger or more precise will be capped or rounded up.
|
||||
// (E.g.: 0.1m will rounded up to 1m.)
|
||||
// This may be extended in the future if we require larger or smaller quantities.
|
||||
//
|
||||
// When a Quantity is parsed from a string, it will remember the type of suffix
|
||||
// it had, and will use the same type again when it is serialized.
|
||||
//
|
||||
// Before serializing, Quantity will be put in "canonical form".
|
||||
// This means that Exponent/suffix will be adjusted up or down (with a
|
||||
// corresponding increase or decrease in Mantissa) such that:
|
||||
// a. No precision is lost
|
||||
// b. No fractional digits will be emitted
|
||||
// c. The exponent (or suffix) is as large as possible.
|
||||
// The sign will be omitted unless the number is negative.
|
||||
//
|
||||
// Examples:
|
||||
// 1.5 will be serialized as "1500m"
|
||||
// 1.5Gi will be serialized as "1536Mi"
|
||||
//
|
||||
// Note that the quantity will NEVER be internally represented by a
|
||||
// floating point number. That is the whole point of this exercise.
|
||||
//
|
||||
// Non-canonical values will still parse as long as they are well formed,
|
||||
// but will be re-emitted in their canonical form. (So always use canonical
|
||||
// form, or don't diff.)
|
||||
//
|
||||
// This format is intended to make it difficult to use these numbers without
|
||||
// writing some sort of special handling code in the hopes that that will
|
||||
// cause implementors to also use a fixed point implementation.
|
||||
//
|
||||
// +protobuf=true
|
||||
// +protobuf.embed=string
|
||||
// +protobuf.options.marshal=false
|
||||
// +protobuf.options.(gogoproto.goproto_stringer)=false
|
||||
// +k8s:deepcopy-gen=true
|
||||
// +k8s:openapi-gen=true
|
||||
type Quantity struct {
|
||||
// i is the quantity in int64 scaled form, if d.Dec == nil
|
||||
i int64Amount
|
||||
// d is the quantity in inf.Dec form if d.Dec != nil
|
||||
d infDecAmount
|
||||
// s is the generated value of this quantity to avoid recalculation
|
||||
s string
|
||||
|
||||
// Change Format at will. See the comment for Canonicalize for
|
||||
// more details.
|
||||
Format
|
||||
}
|
||||
|
||||
// CanonicalValue allows a quantity amount to be converted to a string.
|
||||
type CanonicalValue interface {
|
||||
// AsCanonicalBytes returns a byte array representing the string representation
|
||||
// of the value mantissa and an int32 representing its exponent in base-10. Callers may
|
||||
// pass a byte slice to the method to avoid allocations.
|
||||
AsCanonicalBytes(out []byte) ([]byte, int32)
|
||||
// AsCanonicalBase1024Bytes returns a byte array representing the string representation
|
||||
// of the value mantissa and an int32 representing its exponent in base-1024. Callers
|
||||
// may pass a byte slice to the method to avoid allocations.
|
||||
AsCanonicalBase1024Bytes(out []byte) ([]byte, int32)
|
||||
}
|
||||
|
||||
// Format lists the three possible formattings of a quantity.
|
||||
type Format string
|
||||
|
||||
const (
|
||||
DecimalExponent = Format("DecimalExponent") // e.g., 12e6
|
||||
BinarySI = Format("BinarySI") // e.g., 12Mi (12 * 2^20)
|
||||
DecimalSI = Format("DecimalSI") // e.g., 12M (12 * 10^6)
|
||||
)
|
||||
|
||||
// MustParse turns the given string into a quantity or panics; for tests
|
||||
// or others cases where you know the string is valid.
|
||||
func MustParse(str string) Quantity {
|
||||
q, err := ParseQuantity(str)
|
||||
if err != nil {
|
||||
panic(fmt.Errorf("cannot parse '%v': %v", str, err))
|
||||
}
|
||||
return q
|
||||
}
|
||||
|
||||
const (
|
||||
// splitREString is used to separate a number from its suffix; as such,
|
||||
// this is overly permissive, but that's OK-- it will be checked later.
|
||||
splitREString = "^([+-]?[0-9.]+)([eEinumkKMGTP]*[-+]?[0-9]*)$"
|
||||
)
|
||||
|
||||
var (
|
||||
// Errors that could happen while parsing a string.
|
||||
ErrFormatWrong = errors.New("quantities must match the regular expression '" + splitREString + "'")
|
||||
ErrNumeric = errors.New("unable to parse numeric part of quantity")
|
||||
ErrSuffix = errors.New("unable to parse quantity's suffix")
|
||||
)
|
||||
|
||||
// parseQuantityString is a fast scanner for quantity values.
|
||||
func parseQuantityString(str string) (positive bool, value, num, denom, suffix string, err error) {
|
||||
positive = true
|
||||
pos := 0
|
||||
end := len(str)
|
||||
|
||||
// handle leading sign
|
||||
if pos < end {
|
||||
switch str[0] {
|
||||
case '-':
|
||||
positive = false
|
||||
pos++
|
||||
case '+':
|
||||
pos++
|
||||
}
|
||||
}
|
||||
|
||||
// strip leading zeros
|
||||
Zeroes:
|
||||
for i := pos; ; i++ {
|
||||
if i >= end {
|
||||
num = "0"
|
||||
value = num
|
||||
return
|
||||
}
|
||||
switch str[i] {
|
||||
case '0':
|
||||
pos++
|
||||
default:
|
||||
break Zeroes
|
||||
}
|
||||
}
|
||||
|
||||
// extract the numerator
|
||||
Num:
|
||||
for i := pos; ; i++ {
|
||||
if i >= end {
|
||||
num = str[pos:end]
|
||||
value = str[0:end]
|
||||
return
|
||||
}
|
||||
switch str[i] {
|
||||
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
|
||||
default:
|
||||
num = str[pos:i]
|
||||
pos = i
|
||||
break Num
|
||||
}
|
||||
}
|
||||
|
||||
// if we stripped all numerator positions, always return 0
|
||||
if len(num) == 0 {
|
||||
num = "0"
|
||||
}
|
||||
|
||||
// handle a denominator
|
||||
if pos < end && str[pos] == '.' {
|
||||
pos++
|
||||
Denom:
|
||||
for i := pos; ; i++ {
|
||||
if i >= end {
|
||||
denom = str[pos:end]
|
||||
value = str[0:end]
|
||||
return
|
||||
}
|
||||
switch str[i] {
|
||||
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
|
||||
default:
|
||||
denom = str[pos:i]
|
||||
pos = i
|
||||
break Denom
|
||||
}
|
||||
}
|
||||
// TODO: we currently allow 1.G, but we may not want to in the future.
|
||||
// if len(denom) == 0 {
|
||||
// err = ErrFormatWrong
|
||||
// return
|
||||
// }
|
||||
}
|
||||
value = str[0:pos]
|
||||
|
||||
// grab the elements of the suffix
|
||||
suffixStart := pos
|
||||
for i := pos; ; i++ {
|
||||
if i >= end {
|
||||
suffix = str[suffixStart:end]
|
||||
return
|
||||
}
|
||||
if !strings.ContainsAny(str[i:i+1], "eEinumkKMGTP") {
|
||||
pos = i
|
||||
break
|
||||
}
|
||||
}
|
||||
if pos < end {
|
||||
switch str[pos] {
|
||||
case '-', '+':
|
||||
pos++
|
||||
}
|
||||
}
|
||||
Suffix:
|
||||
for i := pos; ; i++ {
|
||||
if i >= end {
|
||||
suffix = str[suffixStart:end]
|
||||
return
|
||||
}
|
||||
switch str[i] {
|
||||
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
|
||||
default:
|
||||
break Suffix
|
||||
}
|
||||
}
|
||||
// we encountered a non decimal in the Suffix loop, but the last character
|
||||
// was not a valid exponent
|
||||
err = ErrFormatWrong
|
||||
return
|
||||
}
|
||||
|
||||
// ParseQuantity turns str into a Quantity, or returns an error.
|
||||
func ParseQuantity(str string) (Quantity, error) {
|
||||
if len(str) == 0 {
|
||||
return Quantity{}, ErrFormatWrong
|
||||
}
|
||||
if str == "0" {
|
||||
return Quantity{Format: DecimalSI, s: str}, nil
|
||||
}
|
||||
|
||||
positive, value, num, denom, suf, err := parseQuantityString(str)
|
||||
if err != nil {
|
||||
return Quantity{}, err
|
||||
}
|
||||
|
||||
base, exponent, format, ok := quantitySuffixer.interpret(suffix(suf))
|
||||
if !ok {
|
||||
return Quantity{}, ErrSuffix
|
||||
}
|
||||
|
||||
precision := int32(0)
|
||||
scale := int32(0)
|
||||
mantissa := int64(1)
|
||||
switch format {
|
||||
case DecimalExponent, DecimalSI:
|
||||
scale = exponent
|
||||
precision = maxInt64Factors - int32(len(num)+len(denom))
|
||||
case BinarySI:
|
||||
scale = 0
|
||||
switch {
|
||||
case exponent >= 0 && len(denom) == 0:
|
||||
// only handle positive binary numbers with the fast path
|
||||
mantissa = int64(int64(mantissa) << uint64(exponent))
|
||||
// 1Mi (2^20) has ~6 digits of decimal precision, so exponent*3/10 -1 is roughly the precision
|
||||
precision = 15 - int32(len(num)) - int32(float32(exponent)*3/10) - 1
|
||||
default:
|
||||
precision = -1
|
||||
}
|
||||
}
|
||||
|
||||
if precision >= 0 {
|
||||
// if we have a denominator, shift the entire value to the left by the number of places in the
|
||||
// denominator
|
||||
scale -= int32(len(denom))
|
||||
if scale >= int32(Nano) {
|
||||
shifted := num + denom
|
||||
|
||||
var value int64
|
||||
value, err := strconv.ParseInt(shifted, 10, 64)
|
||||
if err != nil {
|
||||
return Quantity{}, ErrNumeric
|
||||
}
|
||||
if result, ok := int64Multiply(value, int64(mantissa)); ok {
|
||||
if !positive {
|
||||
result = -result
|
||||
}
|
||||
// if the number is in canonical form, reuse the string
|
||||
switch format {
|
||||
case BinarySI:
|
||||
if exponent%10 == 0 && (value&0x07 != 0) {
|
||||
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
|
||||
}
|
||||
default:
|
||||
if scale%3 == 0 && !strings.HasSuffix(shifted, "000") && shifted[0] != '0' {
|
||||
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
|
||||
}
|
||||
}
|
||||
return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format}, nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
amount := new(inf.Dec)
|
||||
if _, ok := amount.SetString(value); !ok {
|
||||
return Quantity{}, ErrNumeric
|
||||
}
|
||||
|
||||
// So that no one but us has to think about suffixes, remove it.
|
||||
if base == 10 {
|
||||
amount.SetScale(amount.Scale() + Scale(exponent).infScale())
|
||||
} else if base == 2 {
|
||||
// numericSuffix = 2 ** exponent
|
||||
numericSuffix := big.NewInt(1).Lsh(bigOne, uint(exponent))
|
||||
ub := amount.UnscaledBig()
|
||||
amount.SetUnscaledBig(ub.Mul(ub, numericSuffix))
|
||||
}
|
||||
|
||||
// Cap at min/max bounds.
|
||||
sign := amount.Sign()
|
||||
if sign == -1 {
|
||||
amount.Neg(amount)
|
||||
}
|
||||
|
||||
// This rounds non-zero values up to the minimum representable value, under the theory that
|
||||
// if you want some resources, you should get some resources, even if you asked for way too small
|
||||
// of an amount. Arguably, this should be inf.RoundHalfUp (normal rounding), but that would have
|
||||
// the side effect of rounding values < .5n to zero.
|
||||
if v, ok := amount.Unscaled(); v != int64(0) || !ok {
|
||||
amount.Round(amount, Nano.infScale(), inf.RoundUp)
|
||||
}
|
||||
|
||||
// The max is just a simple cap.
|
||||
// TODO: this prevents accumulating quantities greater than int64, for instance quota across a cluster
|
||||
if format == BinarySI && amount.Cmp(maxAllowed.Dec) > 0 {
|
||||
amount.Set(maxAllowed.Dec)
|
||||
}
|
||||
|
||||
if format == BinarySI && amount.Cmp(decOne) < 0 && amount.Cmp(decZero) > 0 {
|
||||
// This avoids rounding and hopefully confusion, too.
|
||||
format = DecimalSI
|
||||
}
|
||||
if sign == -1 {
|
||||
amount.Neg(amount)
|
||||
}
|
||||
|
||||
return Quantity{d: infDecAmount{amount}, Format: format}, nil
|
||||
}
|
||||
|
||||
// DeepCopy returns a deep-copy of the Quantity value. Note that the method
|
||||
// receiver is a value, so we can mutate it in-place and return it.
|
||||
func (q Quantity) DeepCopy() Quantity {
|
||||
if q.d.Dec != nil {
|
||||
tmp := &inf.Dec{}
|
||||
q.d.Dec = tmp.Set(q.d.Dec)
|
||||
}
|
||||
return q
|
||||
}
|
||||
|
||||
// OpenAPISchemaType is used by the kube-openapi generator when constructing
|
||||
// the OpenAPI spec of this type.
|
||||
//
|
||||
// See: https://github.com/kubernetes/kube-openapi/tree/master/pkg/generators
|
||||
func (_ Quantity) OpenAPISchemaType() []string { return []string{"string"} }
|
||||
|
||||
// OpenAPISchemaFormat is used by the kube-openapi generator when constructing
|
||||
// the OpenAPI spec of this type.
|
||||
func (_ Quantity) OpenAPISchemaFormat() string { return "" }
|
||||
|
||||
// CanonicalizeBytes returns the canonical form of q and its suffix (see comment on Quantity).
|
||||
//
|
||||
// Note about BinarySI:
|
||||
// * If q.Format is set to BinarySI and q.Amount represents a non-zero value between
|
||||
// -1 and +1, it will be emitted as if q.Format were DecimalSI.
|
||||
// * Otherwise, if q.Format is set to BinarySI, fractional parts of q.Amount will be
|
||||
// rounded up. (1.1i becomes 2i.)
|
||||
func (q *Quantity) CanonicalizeBytes(out []byte) (result, suffix []byte) {
|
||||
if q.IsZero() {
|
||||
return zeroBytes, nil
|
||||
}
|
||||
|
||||
var rounded CanonicalValue
|
||||
format := q.Format
|
||||
switch format {
|
||||
case DecimalExponent, DecimalSI:
|
||||
case BinarySI:
|
||||
if q.CmpInt64(-1024) > 0 && q.CmpInt64(1024) < 0 {
|
||||
// This avoids rounding and hopefully confusion, too.
|
||||
format = DecimalSI
|
||||
} else {
|
||||
var exact bool
|
||||
if rounded, exact = q.AsScale(0); !exact {
|
||||
// Don't lose precision-- show as DecimalSI
|
||||
format = DecimalSI
|
||||
}
|
||||
}
|
||||
default:
|
||||
format = DecimalExponent
|
||||
}
|
||||
|
||||
// TODO: If BinarySI formatting is requested but would cause rounding, upgrade to
|
||||
// one of the other formats.
|
||||
switch format {
|
||||
case DecimalExponent, DecimalSI:
|
||||
number, exponent := q.AsCanonicalBytes(out)
|
||||
suffix, _ := quantitySuffixer.constructBytes(10, exponent, format)
|
||||
return number, suffix
|
||||
default:
|
||||
// format must be BinarySI
|
||||
number, exponent := rounded.AsCanonicalBase1024Bytes(out)
|
||||
suffix, _ := quantitySuffixer.constructBytes(2, exponent*10, format)
|
||||
return number, suffix
|
||||
}
|
||||
}
|
||||
|
||||
// AsInt64 returns a representation of the current value as an int64 if a fast conversion
|
||||
// is possible. If false is returned, callers must use the inf.Dec form of this quantity.
|
||||
func (q *Quantity) AsInt64() (int64, bool) {
|
||||
if q.d.Dec != nil {
|
||||
return 0, false
|
||||
}
|
||||
return q.i.AsInt64()
|
||||
}
|
||||
|
||||
// ToDec promotes the quantity in place to use an inf.Dec representation and returns itself.
|
||||
func (q *Quantity) ToDec() *Quantity {
|
||||
if q.d.Dec == nil {
|
||||
q.d.Dec = q.i.AsDec()
|
||||
q.i = int64Amount{}
|
||||
}
|
||||
return q
|
||||
}
|
||||
|
||||
// AsDec returns the quantity as represented by a scaled inf.Dec.
|
||||
func (q *Quantity) AsDec() *inf.Dec {
|
||||
if q.d.Dec != nil {
|
||||
return q.d.Dec
|
||||
}
|
||||
q.d.Dec = q.i.AsDec()
|
||||
q.i = int64Amount{}
|
||||
return q.d.Dec
|
||||
}
|
||||
|
||||
// AsCanonicalBytes returns the canonical byte representation of this quantity as a mantissa
|
||||
// and base 10 exponent. The out byte slice may be passed to the method to avoid an extra
|
||||
// allocation.
|
||||
func (q *Quantity) AsCanonicalBytes(out []byte) (result []byte, exponent int32) {
|
||||
if q.d.Dec != nil {
|
||||
return q.d.AsCanonicalBytes(out)
|
||||
}
|
||||
return q.i.AsCanonicalBytes(out)
|
||||
}
|
||||
|
||||
// IsZero returns true if the quantity is equal to zero.
|
||||
func (q *Quantity) IsZero() bool {
|
||||
if q.d.Dec != nil {
|
||||
return q.d.Dec.Sign() == 0
|
||||
}
|
||||
return q.i.value == 0
|
||||
}
|
||||
|
||||
// Sign returns 0 if the quantity is zero, -1 if the quantity is less than zero, or 1 if the
|
||||
// quantity is greater than zero.
|
||||
func (q *Quantity) Sign() int {
|
||||
if q.d.Dec != nil {
|
||||
return q.d.Dec.Sign()
|
||||
}
|
||||
return q.i.Sign()
|
||||
}
|
||||
|
||||
// AsScale returns the current value, rounded up to the provided scale, and returns
|
||||
// false if the scale resulted in a loss of precision.
|
||||
func (q *Quantity) AsScale(scale Scale) (CanonicalValue, bool) {
|
||||
if q.d.Dec != nil {
|
||||
return q.d.AsScale(scale)
|
||||
}
|
||||
return q.i.AsScale(scale)
|
||||
}
|
||||
|
||||
// RoundUp updates the quantity to the provided scale, ensuring that the value is at
|
||||
// least 1. False is returned if the rounding operation resulted in a loss of precision.
|
||||
// Negative numbers are rounded away from zero (-9 scale 1 rounds to -10).
|
||||
func (q *Quantity) RoundUp(scale Scale) bool {
|
||||
if q.d.Dec != nil {
|
||||
q.s = ""
|
||||
d, exact := q.d.AsScale(scale)
|
||||
q.d = d
|
||||
return exact
|
||||
}
|
||||
// avoid clearing the string value if we have already calculated it
|
||||
if q.i.scale >= scale {
|
||||
return true
|
||||
}
|
||||
q.s = ""
|
||||
i, exact := q.i.AsScale(scale)
|
||||
q.i = i
|
||||
return exact
|
||||
}
|
||||
|
||||
// Add adds the provide y quantity to the current value. If the current value is zero,
|
||||
// the format of the quantity will be updated to the format of y.
|
||||
func (q *Quantity) Add(y Quantity) {
|
||||
q.s = ""
|
||||
if q.d.Dec == nil && y.d.Dec == nil {
|
||||
if q.i.value == 0 {
|
||||
q.Format = y.Format
|
||||
}
|
||||
if q.i.Add(y.i) {
|
||||
return
|
||||
}
|
||||
} else if q.IsZero() {
|
||||
q.Format = y.Format
|
||||
}
|
||||
q.ToDec().d.Dec.Add(q.d.Dec, y.AsDec())
|
||||
}
|
||||
|
||||
// Sub subtracts the provided quantity from the current value in place. If the current
|
||||
// value is zero, the format of the quantity will be updated to the format of y.
|
||||
func (q *Quantity) Sub(y Quantity) {
|
||||
q.s = ""
|
||||
if q.IsZero() {
|
||||
q.Format = y.Format
|
||||
}
|
||||
if q.d.Dec == nil && y.d.Dec == nil && q.i.Sub(y.i) {
|
||||
return
|
||||
}
|
||||
q.ToDec().d.Dec.Sub(q.d.Dec, y.AsDec())
|
||||
}
|
||||
|
||||
// Cmp returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
|
||||
// quantity is greater than y.
|
||||
func (q *Quantity) Cmp(y Quantity) int {
|
||||
if q.d.Dec == nil && y.d.Dec == nil {
|
||||
return q.i.Cmp(y.i)
|
||||
}
|
||||
return q.AsDec().Cmp(y.AsDec())
|
||||
}
|
||||
|
||||
// CmpInt64 returns 0 if the quantity is equal to y, -1 if the quantity is less than y, or 1 if the
|
||||
// quantity is greater than y.
|
||||
func (q *Quantity) CmpInt64(y int64) int {
|
||||
if q.d.Dec != nil {
|
||||
return q.d.Dec.Cmp(inf.NewDec(y, inf.Scale(0)))
|
||||
}
|
||||
return q.i.Cmp(int64Amount{value: y})
|
||||
}
|
||||
|
||||
// Neg sets quantity to be the negative value of itself.
|
||||
func (q *Quantity) Neg() {
|
||||
q.s = ""
|
||||
if q.d.Dec == nil {
|
||||
q.i.value = -q.i.value
|
||||
return
|
||||
}
|
||||
q.d.Dec.Neg(q.d.Dec)
|
||||
}
|
||||
|
||||
// Equal checks equality of two Quantities. This is useful for testing with
|
||||
// cmp.Equal.
|
||||
func (q Quantity) Equal(v Quantity) bool {
|
||||
return q.Cmp(v) == 0
|
||||
}
|
||||
|
||||
// int64QuantityExpectedBytes is the expected width in bytes of the canonical string representation
|
||||
// of most Quantity values.
|
||||
const int64QuantityExpectedBytes = 18
|
||||
|
||||
// String formats the Quantity as a string, caching the result if not calculated.
|
||||
// String is an expensive operation and caching this result significantly reduces the cost of
|
||||
// normal parse / marshal operations on Quantity.
|
||||
func (q *Quantity) String() string {
|
||||
if len(q.s) == 0 {
|
||||
result := make([]byte, 0, int64QuantityExpectedBytes)
|
||||
number, suffix := q.CanonicalizeBytes(result)
|
||||
number = append(number, suffix...)
|
||||
q.s = string(number)
|
||||
}
|
||||
return q.s
|
||||
}
|
||||
|
||||
// MarshalJSON implements the json.Marshaller interface.
|
||||
func (q Quantity) MarshalJSON() ([]byte, error) {
|
||||
if len(q.s) > 0 {
|
||||
out := make([]byte, len(q.s)+2)
|
||||
out[0], out[len(out)-1] = '"', '"'
|
||||
copy(out[1:], q.s)
|
||||
return out, nil
|
||||
}
|
||||
result := make([]byte, int64QuantityExpectedBytes, int64QuantityExpectedBytes)
|
||||
result[0] = '"'
|
||||
number, suffix := q.CanonicalizeBytes(result[1:1])
|
||||
// if the same slice was returned to us that we passed in, avoid another allocation by copying number into
|
||||
// the source slice and returning that
|
||||
if len(number) > 0 && &number[0] == &result[1] && (len(number)+len(suffix)+2) <= int64QuantityExpectedBytes {
|
||||
number = append(number, suffix...)
|
||||
number = append(number, '"')
|
||||
return result[:1+len(number)], nil
|
||||
}
|
||||
// if CanonicalizeBytes needed more space than our slice provided, we may need to allocate again so use
|
||||
// append
|
||||
result = result[:1]
|
||||
result = append(result, number...)
|
||||
result = append(result, suffix...)
|
||||
result = append(result, '"')
|
||||
return result, nil
|
||||
}
|
||||
|
||||
// ToUnstructured implements the value.UnstructuredConverter interface.
|
||||
func (q Quantity) ToUnstructured() interface{} {
|
||||
return q.String()
|
||||
}
|
||||
|
||||
// UnmarshalJSON implements the json.Unmarshaller interface.
|
||||
// TODO: Remove support for leading/trailing whitespace
|
||||
func (q *Quantity) UnmarshalJSON(value []byte) error {
|
||||
l := len(value)
|
||||
if l == 4 && bytes.Equal(value, []byte("null")) {
|
||||
q.d.Dec = nil
|
||||
q.i = int64Amount{}
|
||||
return nil
|
||||
}
|
||||
if l >= 2 && value[0] == '"' && value[l-1] == '"' {
|
||||
value = value[1 : l-1]
|
||||
}
|
||||
|
||||
parsed, err := ParseQuantity(strings.TrimSpace(string(value)))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// This copy is safe because parsed will not be referred to again.
|
||||
*q = parsed
|
||||
return nil
|
||||
}
|
||||
|
||||
// NewQuantity returns a new Quantity representing the given
|
||||
// value in the given format.
|
||||
func NewQuantity(value int64, format Format) *Quantity {
|
||||
return &Quantity{
|
||||
i: int64Amount{value: value},
|
||||
Format: format,
|
||||
}
|
||||
}
|
||||
|
||||
// NewMilliQuantity returns a new Quantity representing the given
|
||||
// value * 1/1000 in the given format. Note that BinarySI formatting
|
||||
// will round fractional values, and will be changed to DecimalSI for
|
||||
// values x where (-1 < x < 1) && (x != 0).
|
||||
func NewMilliQuantity(value int64, format Format) *Quantity {
|
||||
return &Quantity{
|
||||
i: int64Amount{value: value, scale: -3},
|
||||
Format: format,
|
||||
}
|
||||
}
|
||||
|
||||
// NewScaledQuantity returns a new Quantity representing the given
|
||||
// value * 10^scale in DecimalSI format.
|
||||
func NewScaledQuantity(value int64, scale Scale) *Quantity {
|
||||
return &Quantity{
|
||||
i: int64Amount{value: value, scale: scale},
|
||||
Format: DecimalSI,
|
||||
}
|
||||
}
|
||||
|
||||
// Value returns the unscaled value of q rounded up to the nearest integer away from 0.
|
||||
func (q *Quantity) Value() int64 {
|
||||
return q.ScaledValue(0)
|
||||
}
|
||||
|
||||
// MilliValue returns the value of ceil(q * 1000); this could overflow an int64;
|
||||
// if that's a concern, call Value() first to verify the number is small enough.
|
||||
func (q *Quantity) MilliValue() int64 {
|
||||
return q.ScaledValue(Milli)
|
||||
}
|
||||
|
||||
// ScaledValue returns the value of ceil(q / 10^scale).
|
||||
// For example, NewQuantity(1, DecimalSI).ScaledValue(Milli) returns 1000.
|
||||
// This could overflow an int64.
|
||||
// To detect overflow, call Value() first and verify the expected magnitude.
|
||||
func (q *Quantity) ScaledValue(scale Scale) int64 {
|
||||
if q.d.Dec == nil {
|
||||
i, _ := q.i.AsScaledInt64(scale)
|
||||
return i
|
||||
}
|
||||
dec := q.d.Dec
|
||||
return scaledValue(dec.UnscaledBig(), int(dec.Scale()), int(scale.infScale()))
|
||||
}
|
||||
|
||||
// Set sets q's value to be value.
|
||||
func (q *Quantity) Set(value int64) {
|
||||
q.SetScaled(value, 0)
|
||||
}
|
||||
|
||||
// SetMilli sets q's value to be value * 1/1000.
|
||||
func (q *Quantity) SetMilli(value int64) {
|
||||
q.SetScaled(value, Milli)
|
||||
}
|
||||
|
||||
// SetScaled sets q's value to be value * 10^scale
|
||||
func (q *Quantity) SetScaled(value int64, scale Scale) {
|
||||
q.s = ""
|
||||
q.d.Dec = nil
|
||||
q.i = int64Amount{value: value, scale: scale}
|
||||
}
|
288
vendor/k8s.io/apimachinery/pkg/api/resource/quantity_proto.go
generated
vendored
Normal file
288
vendor/k8s.io/apimachinery/pkg/api/resource/quantity_proto.go
generated
vendored
Normal file
@ -0,0 +1,288 @@
|
||||
/*
|
||||
Copyright 2015 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package resource
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"math/bits"
|
||||
|
||||
"github.com/gogo/protobuf/proto"
|
||||
)
|
||||
|
||||
var _ proto.Sizer = &Quantity{}
|
||||
|
||||
func (m *Quantity) Marshal() (data []byte, err error) {
|
||||
size := m.Size()
|
||||
data = make([]byte, size)
|
||||
n, err := m.MarshalToSizedBuffer(data[:size])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return data[:n], nil
|
||||
}
|
||||
|
||||
// MarshalTo is a customized version of the generated Protobuf unmarshaler for a struct
|
||||
// with a single string field.
|
||||
func (m *Quantity) MarshalTo(data []byte) (int, error) {
|
||||
size := m.Size()
|
||||
return m.MarshalToSizedBuffer(data[:size])
|
||||
}
|
||||
|
||||
// MarshalToSizedBuffer is a customized version of the generated
|
||||
// Protobuf unmarshaler for a struct with a single string field.
|
||||
func (m *Quantity) MarshalToSizedBuffer(data []byte) (int, error) {
|
||||
i := len(data)
|
||||
_ = i
|
||||
var l int
|
||||
_ = l
|
||||
|
||||
// BEGIN CUSTOM MARSHAL
|
||||
out := m.String()
|
||||
i -= len(out)
|
||||
copy(data[i:], out)
|
||||
i = encodeVarintGenerated(data, i, uint64(len(out)))
|
||||
// END CUSTOM MARSHAL
|
||||
i--
|
||||
data[i] = 0xa
|
||||
|
||||
return len(data) - i, nil
|
||||
}
|
||||
|
||||
func encodeVarintGenerated(data []byte, offset int, v uint64) int {
|
||||
offset -= sovGenerated(v)
|
||||
base := offset
|
||||
for v >= 1<<7 {
|
||||
data[offset] = uint8(v&0x7f | 0x80)
|
||||
v >>= 7
|
||||
offset++
|
||||
}
|
||||
data[offset] = uint8(v)
|
||||
return base
|
||||
}
|
||||
|
||||
func (m *Quantity) Size() (n int) {
|
||||
var l int
|
||||
_ = l
|
||||
|
||||
// BEGIN CUSTOM SIZE
|
||||
l = len(m.String())
|
||||
// END CUSTOM SIZE
|
||||
|
||||
n += 1 + l + sovGenerated(uint64(l))
|
||||
return n
|
||||
}
|
||||
|
||||
func sovGenerated(x uint64) (n int) {
|
||||
return (bits.Len64(x|1) + 6) / 7
|
||||
}
|
||||
|
||||
// Unmarshal is a customized version of the generated Protobuf unmarshaler for a struct
|
||||
// with a single string field.
|
||||
func (m *Quantity) Unmarshal(data []byte) error {
|
||||
l := len(data)
|
||||
iNdEx := 0
|
||||
for iNdEx < l {
|
||||
preIndex := iNdEx
|
||||
var wire uint64
|
||||
for shift := uint(0); ; shift += 7 {
|
||||
if shift >= 64 {
|
||||
return ErrIntOverflowGenerated
|
||||
}
|
||||
if iNdEx >= l {
|
||||
return io.ErrUnexpectedEOF
|
||||
}
|
||||
b := data[iNdEx]
|
||||
iNdEx++
|
||||
wire |= (uint64(b) & 0x7F) << shift
|
||||
if b < 0x80 {
|
||||
break
|
||||
}
|
||||
}
|
||||
fieldNum := int32(wire >> 3)
|
||||
wireType := int(wire & 0x7)
|
||||
if wireType == 4 {
|
||||
return fmt.Errorf("proto: Quantity: wiretype end group for non-group")
|
||||
}
|
||||
if fieldNum <= 0 {
|
||||
return fmt.Errorf("proto: Quantity: illegal tag %d (wire type %d)", fieldNum, wire)
|
||||
}
|
||||
switch fieldNum {
|
||||
case 1:
|
||||
if wireType != 2 {
|
||||
return fmt.Errorf("proto: wrong wireType = %d for field String_", wireType)
|
||||
}
|
||||
var stringLen uint64
|
||||
for shift := uint(0); ; shift += 7 {
|
||||
if shift >= 64 {
|
||||
return ErrIntOverflowGenerated
|
||||
}
|
||||
if iNdEx >= l {
|
||||
return io.ErrUnexpectedEOF
|
||||
}
|
||||
b := data[iNdEx]
|
||||
iNdEx++
|
||||
stringLen |= (uint64(b) & 0x7F) << shift
|
||||
if b < 0x80 {
|
||||
break
|
||||
}
|
||||
}
|
||||
intStringLen := int(stringLen)
|
||||
if intStringLen < 0 {
|
||||
return ErrInvalidLengthGenerated
|
||||
}
|
||||
postIndex := iNdEx + intStringLen
|
||||
if postIndex > l {
|
||||
return io.ErrUnexpectedEOF
|
||||
}
|
||||
s := string(data[iNdEx:postIndex])
|
||||
|
||||
// BEGIN CUSTOM DECODE
|
||||
p, err := ParseQuantity(s)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
*m = p
|
||||
// END CUSTOM DECODE
|
||||
|
||||
iNdEx = postIndex
|
||||
default:
|
||||
iNdEx = preIndex
|
||||
skippy, err := skipGenerated(data[iNdEx:])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if skippy < 0 {
|
||||
return ErrInvalidLengthGenerated
|
||||
}
|
||||
if (iNdEx + skippy) > l {
|
||||
return io.ErrUnexpectedEOF
|
||||
}
|
||||
iNdEx += skippy
|
||||
}
|
||||
}
|
||||
|
||||
if iNdEx > l {
|
||||
return io.ErrUnexpectedEOF
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func skipGenerated(data []byte) (n int, err error) {
|
||||
l := len(data)
|
||||
iNdEx := 0
|
||||
for iNdEx < l {
|
||||
var wire uint64
|
||||
for shift := uint(0); ; shift += 7 {
|
||||
if shift >= 64 {
|
||||
return 0, ErrIntOverflowGenerated
|
||||
}
|
||||
if iNdEx >= l {
|
||||
return 0, io.ErrUnexpectedEOF
|
||||
}
|
||||
b := data[iNdEx]
|
||||
iNdEx++
|
||||
wire |= (uint64(b) & 0x7F) << shift
|
||||
if b < 0x80 {
|
||||
break
|
||||
}
|
||||
}
|
||||
wireType := int(wire & 0x7)
|
||||
switch wireType {
|
||||
case 0:
|
||||
for shift := uint(0); ; shift += 7 {
|
||||
if shift >= 64 {
|
||||
return 0, ErrIntOverflowGenerated
|
||||
}
|
||||
if iNdEx >= l {
|
||||
return 0, io.ErrUnexpectedEOF
|
||||
}
|
||||
iNdEx++
|
||||
if data[iNdEx-1] < 0x80 {
|
||||
break
|
||||
}
|
||||
}
|
||||
return iNdEx, nil
|
||||
case 1:
|
||||
iNdEx += 8
|
||||
return iNdEx, nil
|
||||
case 2:
|
||||
var length int
|
||||
for shift := uint(0); ; shift += 7 {
|
||||
if shift >= 64 {
|
||||
return 0, ErrIntOverflowGenerated
|
||||
}
|
||||
if iNdEx >= l {
|
||||
return 0, io.ErrUnexpectedEOF
|
||||
}
|
||||
b := data[iNdEx]
|
||||
iNdEx++
|
||||
length |= (int(b) & 0x7F) << shift
|
||||
if b < 0x80 {
|
||||
break
|
||||
}
|
||||
}
|
||||
iNdEx += length
|
||||
if length < 0 {
|
||||
return 0, ErrInvalidLengthGenerated
|
||||
}
|
||||
return iNdEx, nil
|
||||
case 3:
|
||||
for {
|
||||
var innerWire uint64
|
||||
var start int = iNdEx
|
||||
for shift := uint(0); ; shift += 7 {
|
||||
if shift >= 64 {
|
||||
return 0, ErrIntOverflowGenerated
|
||||
}
|
||||
if iNdEx >= l {
|
||||
return 0, io.ErrUnexpectedEOF
|
||||
}
|
||||
b := data[iNdEx]
|
||||
iNdEx++
|
||||
innerWire |= (uint64(b) & 0x7F) << shift
|
||||
if b < 0x80 {
|
||||
break
|
||||
}
|
||||
}
|
||||
innerWireType := int(innerWire & 0x7)
|
||||
if innerWireType == 4 {
|
||||
break
|
||||
}
|
||||
next, err := skipGenerated(data[start:])
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
iNdEx = start + next
|
||||
}
|
||||
return iNdEx, nil
|
||||
case 4:
|
||||
return iNdEx, nil
|
||||
case 5:
|
||||
iNdEx += 4
|
||||
return iNdEx, nil
|
||||
default:
|
||||
return 0, fmt.Errorf("proto: illegal wireType %d", wireType)
|
||||
}
|
||||
}
|
||||
panic("unreachable")
|
||||
}
|
||||
|
||||
var (
|
||||
ErrInvalidLengthGenerated = fmt.Errorf("proto: negative length found during unmarshaling")
|
||||
ErrIntOverflowGenerated = fmt.Errorf("proto: integer overflow")
|
||||
)
|
95
vendor/k8s.io/apimachinery/pkg/api/resource/scale_int.go
generated
vendored
Normal file
95
vendor/k8s.io/apimachinery/pkg/api/resource/scale_int.go
generated
vendored
Normal file
@ -0,0 +1,95 @@
|
||||
/*
|
||||
Copyright 2015 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package resource
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/big"
|
||||
"sync"
|
||||
)
|
||||
|
||||
var (
|
||||
// A sync pool to reduce allocation.
|
||||
intPool sync.Pool
|
||||
maxInt64 = big.NewInt(math.MaxInt64)
|
||||
)
|
||||
|
||||
func init() {
|
||||
intPool.New = func() interface{} {
|
||||
return &big.Int{}
|
||||
}
|
||||
}
|
||||
|
||||
// scaledValue scales given unscaled value from scale to new Scale and returns
|
||||
// an int64. It ALWAYS rounds up the result when scale down. The final result might
|
||||
// overflow.
|
||||
//
|
||||
// scale, newScale represents the scale of the unscaled decimal.
|
||||
// The mathematical value of the decimal is unscaled * 10**(-scale).
|
||||
func scaledValue(unscaled *big.Int, scale, newScale int) int64 {
|
||||
dif := scale - newScale
|
||||
if dif == 0 {
|
||||
return unscaled.Int64()
|
||||
}
|
||||
|
||||
// Handle scale up
|
||||
// This is an easy case, we do not need to care about rounding and overflow.
|
||||
// If any intermediate operation causes overflow, the result will overflow.
|
||||
if dif < 0 {
|
||||
return unscaled.Int64() * int64(math.Pow10(-dif))
|
||||
}
|
||||
|
||||
// Handle scale down
|
||||
// We have to be careful about the intermediate operations.
|
||||
|
||||
// fast path when unscaled < max.Int64 and exp(10,dif) < max.Int64
|
||||
const log10MaxInt64 = 19
|
||||
if unscaled.Cmp(maxInt64) < 0 && dif < log10MaxInt64 {
|
||||
divide := int64(math.Pow10(dif))
|
||||
result := unscaled.Int64() / divide
|
||||
mod := unscaled.Int64() % divide
|
||||
if mod != 0 {
|
||||
return result + 1
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// We should only convert back to int64 when getting the result.
|
||||
divisor := intPool.Get().(*big.Int)
|
||||
exp := intPool.Get().(*big.Int)
|
||||
result := intPool.Get().(*big.Int)
|
||||
defer func() {
|
||||
intPool.Put(divisor)
|
||||
intPool.Put(exp)
|
||||
intPool.Put(result)
|
||||
}()
|
||||
|
||||
// divisor = 10^(dif)
|
||||
// TODO: create loop up table if exp costs too much.
|
||||
divisor.Exp(bigTen, exp.SetInt64(int64(dif)), nil)
|
||||
// reuse exp
|
||||
remainder := exp
|
||||
|
||||
// result = unscaled / divisor
|
||||
// remainder = unscaled % divisor
|
||||
result.DivMod(unscaled, divisor, remainder)
|
||||
if remainder.Sign() != 0 {
|
||||
return result.Int64() + 1
|
||||
}
|
||||
|
||||
return result.Int64()
|
||||
}
|
198
vendor/k8s.io/apimachinery/pkg/api/resource/suffix.go
generated
vendored
Normal file
198
vendor/k8s.io/apimachinery/pkg/api/resource/suffix.go
generated
vendored
Normal file
@ -0,0 +1,198 @@
|
||||
/*
|
||||
Copyright 2014 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package resource
|
||||
|
||||
import (
|
||||
"strconv"
|
||||
)
|
||||
|
||||
type suffix string
|
||||
|
||||
// suffixer can interpret and construct suffixes.
|
||||
type suffixer interface {
|
||||
interpret(suffix) (base, exponent int32, fmt Format, ok bool)
|
||||
construct(base, exponent int32, fmt Format) (s suffix, ok bool)
|
||||
constructBytes(base, exponent int32, fmt Format) (s []byte, ok bool)
|
||||
}
|
||||
|
||||
// quantitySuffixer handles suffixes for all three formats that quantity
|
||||
// can handle.
|
||||
var quantitySuffixer = newSuffixer()
|
||||
|
||||
type bePair struct {
|
||||
base, exponent int32
|
||||
}
|
||||
|
||||
type listSuffixer struct {
|
||||
suffixToBE map[suffix]bePair
|
||||
beToSuffix map[bePair]suffix
|
||||
beToSuffixBytes map[bePair][]byte
|
||||
}
|
||||
|
||||
func (ls *listSuffixer) addSuffix(s suffix, pair bePair) {
|
||||
if ls.suffixToBE == nil {
|
||||
ls.suffixToBE = map[suffix]bePair{}
|
||||
}
|
||||
if ls.beToSuffix == nil {
|
||||
ls.beToSuffix = map[bePair]suffix{}
|
||||
}
|
||||
if ls.beToSuffixBytes == nil {
|
||||
ls.beToSuffixBytes = map[bePair][]byte{}
|
||||
}
|
||||
ls.suffixToBE[s] = pair
|
||||
ls.beToSuffix[pair] = s
|
||||
ls.beToSuffixBytes[pair] = []byte(s)
|
||||
}
|
||||
|
||||
func (ls *listSuffixer) lookup(s suffix) (base, exponent int32, ok bool) {
|
||||
pair, ok := ls.suffixToBE[s]
|
||||
if !ok {
|
||||
return 0, 0, false
|
||||
}
|
||||
return pair.base, pair.exponent, true
|
||||
}
|
||||
|
||||
func (ls *listSuffixer) construct(base, exponent int32) (s suffix, ok bool) {
|
||||
s, ok = ls.beToSuffix[bePair{base, exponent}]
|
||||
return
|
||||
}
|
||||
|
||||
func (ls *listSuffixer) constructBytes(base, exponent int32) (s []byte, ok bool) {
|
||||
s, ok = ls.beToSuffixBytes[bePair{base, exponent}]
|
||||
return
|
||||
}
|
||||
|
||||
type suffixHandler struct {
|
||||
decSuffixes listSuffixer
|
||||
binSuffixes listSuffixer
|
||||
}
|
||||
|
||||
type fastLookup struct {
|
||||
*suffixHandler
|
||||
}
|
||||
|
||||
func (l fastLookup) interpret(s suffix) (base, exponent int32, format Format, ok bool) {
|
||||
switch s {
|
||||
case "":
|
||||
return 10, 0, DecimalSI, true
|
||||
case "n":
|
||||
return 10, -9, DecimalSI, true
|
||||
case "u":
|
||||
return 10, -6, DecimalSI, true
|
||||
case "m":
|
||||
return 10, -3, DecimalSI, true
|
||||
case "k":
|
||||
return 10, 3, DecimalSI, true
|
||||
case "M":
|
||||
return 10, 6, DecimalSI, true
|
||||
case "G":
|
||||
return 10, 9, DecimalSI, true
|
||||
}
|
||||
return l.suffixHandler.interpret(s)
|
||||
}
|
||||
|
||||
func newSuffixer() suffixer {
|
||||
sh := &suffixHandler{}
|
||||
|
||||
// IMPORTANT: if you change this section you must change fastLookup
|
||||
|
||||
sh.binSuffixes.addSuffix("Ki", bePair{2, 10})
|
||||
sh.binSuffixes.addSuffix("Mi", bePair{2, 20})
|
||||
sh.binSuffixes.addSuffix("Gi", bePair{2, 30})
|
||||
sh.binSuffixes.addSuffix("Ti", bePair{2, 40})
|
||||
sh.binSuffixes.addSuffix("Pi", bePair{2, 50})
|
||||
sh.binSuffixes.addSuffix("Ei", bePair{2, 60})
|
||||
// Don't emit an error when trying to produce
|
||||
// a suffix for 2^0.
|
||||
sh.decSuffixes.addSuffix("", bePair{2, 0})
|
||||
|
||||
sh.decSuffixes.addSuffix("n", bePair{10, -9})
|
||||
sh.decSuffixes.addSuffix("u", bePair{10, -6})
|
||||
sh.decSuffixes.addSuffix("m", bePair{10, -3})
|
||||
sh.decSuffixes.addSuffix("", bePair{10, 0})
|
||||
sh.decSuffixes.addSuffix("k", bePair{10, 3})
|
||||
sh.decSuffixes.addSuffix("M", bePair{10, 6})
|
||||
sh.decSuffixes.addSuffix("G", bePair{10, 9})
|
||||
sh.decSuffixes.addSuffix("T", bePair{10, 12})
|
||||
sh.decSuffixes.addSuffix("P", bePair{10, 15})
|
||||
sh.decSuffixes.addSuffix("E", bePair{10, 18})
|
||||
|
||||
return fastLookup{sh}
|
||||
}
|
||||
|
||||
func (sh *suffixHandler) construct(base, exponent int32, fmt Format) (s suffix, ok bool) {
|
||||
switch fmt {
|
||||
case DecimalSI:
|
||||
return sh.decSuffixes.construct(base, exponent)
|
||||
case BinarySI:
|
||||
return sh.binSuffixes.construct(base, exponent)
|
||||
case DecimalExponent:
|
||||
if base != 10 {
|
||||
return "", false
|
||||
}
|
||||
if exponent == 0 {
|
||||
return "", true
|
||||
}
|
||||
return suffix("e" + strconv.FormatInt(int64(exponent), 10)), true
|
||||
}
|
||||
return "", false
|
||||
}
|
||||
|
||||
func (sh *suffixHandler) constructBytes(base, exponent int32, format Format) (s []byte, ok bool) {
|
||||
switch format {
|
||||
case DecimalSI:
|
||||
return sh.decSuffixes.constructBytes(base, exponent)
|
||||
case BinarySI:
|
||||
return sh.binSuffixes.constructBytes(base, exponent)
|
||||
case DecimalExponent:
|
||||
if base != 10 {
|
||||
return nil, false
|
||||
}
|
||||
if exponent == 0 {
|
||||
return nil, true
|
||||
}
|
||||
result := make([]byte, 8, 8)
|
||||
result[0] = 'e'
|
||||
number := strconv.AppendInt(result[1:1], int64(exponent), 10)
|
||||
if &result[1] == &number[0] {
|
||||
return result[:1+len(number)], true
|
||||
}
|
||||
result = append(result[:1], number...)
|
||||
return result, true
|
||||
}
|
||||
return nil, false
|
||||
}
|
||||
|
||||
func (sh *suffixHandler) interpret(suffix suffix) (base, exponent int32, fmt Format, ok bool) {
|
||||
// Try lookup tables first
|
||||
if b, e, ok := sh.decSuffixes.lookup(suffix); ok {
|
||||
return b, e, DecimalSI, true
|
||||
}
|
||||
if b, e, ok := sh.binSuffixes.lookup(suffix); ok {
|
||||
return b, e, BinarySI, true
|
||||
}
|
||||
|
||||
if len(suffix) > 1 && (suffix[0] == 'E' || suffix[0] == 'e') {
|
||||
parsed, err := strconv.ParseInt(string(suffix[1:]), 10, 64)
|
||||
if err != nil {
|
||||
return 0, 0, DecimalExponent, false
|
||||
}
|
||||
return 10, int32(parsed), DecimalExponent, true
|
||||
}
|
||||
|
||||
return 0, 0, DecimalExponent, false
|
||||
}
|
27
vendor/k8s.io/apimachinery/pkg/api/resource/zz_generated.deepcopy.go
generated
vendored
Normal file
27
vendor/k8s.io/apimachinery/pkg/api/resource/zz_generated.deepcopy.go
generated
vendored
Normal file
@ -0,0 +1,27 @@
|
||||
// +build !ignore_autogenerated
|
||||
|
||||
/*
|
||||
Copyright The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
// Code generated by deepcopy-gen. DO NOT EDIT.
|
||||
|
||||
package resource
|
||||
|
||||
// DeepCopyInto is an autogenerated deepcopy function, copying the receiver, writing into out. in must be non-nil.
|
||||
func (in *Quantity) DeepCopyInto(out *Quantity) {
|
||||
*out = in.DeepCopy()
|
||||
return
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user