mirror of
https://github.com/openfaas/faasd.git
synced 2025-06-19 12:36:38 +00:00
Update dependencies
* Updates netlink/netns * Updates x/sys, arkade and apimachinery Build passes, minor updates. Signed-off-by: Alex Ellis (OpenFaaS Ltd) <alexellis2@gmail.com>
This commit is contained in:
85
vendor/github.com/klauspost/compress/compressible.go
generated
vendored
Normal file
85
vendor/github.com/klauspost/compress/compressible.go
generated
vendored
Normal file
@ -0,0 +1,85 @@
|
||||
package compress
|
||||
|
||||
import "math"
|
||||
|
||||
// Estimate returns a normalized compressibility estimate of block b.
|
||||
// Values close to zero are likely uncompressible.
|
||||
// Values above 0.1 are likely to be compressible.
|
||||
// Values above 0.5 are very compressible.
|
||||
// Very small lengths will return 0.
|
||||
func Estimate(b []byte) float64 {
|
||||
if len(b) < 16 {
|
||||
return 0
|
||||
}
|
||||
|
||||
// Correctly predicted order 1
|
||||
hits := 0
|
||||
lastMatch := false
|
||||
var o1 [256]byte
|
||||
var hist [256]int
|
||||
c1 := byte(0)
|
||||
for _, c := range b {
|
||||
if c == o1[c1] {
|
||||
// We only count a hit if there was two correct predictions in a row.
|
||||
if lastMatch {
|
||||
hits++
|
||||
}
|
||||
lastMatch = true
|
||||
} else {
|
||||
lastMatch = false
|
||||
}
|
||||
o1[c1] = c
|
||||
c1 = c
|
||||
hist[c]++
|
||||
}
|
||||
|
||||
// Use x^0.6 to give better spread
|
||||
prediction := math.Pow(float64(hits)/float64(len(b)), 0.6)
|
||||
|
||||
// Calculate histogram distribution
|
||||
variance := float64(0)
|
||||
avg := float64(len(b)) / 256
|
||||
|
||||
for _, v := range hist {
|
||||
Δ := float64(v) - avg
|
||||
variance += Δ * Δ
|
||||
}
|
||||
|
||||
stddev := math.Sqrt(float64(variance)) / float64(len(b))
|
||||
exp := math.Sqrt(1 / float64(len(b)))
|
||||
|
||||
// Subtract expected stddev
|
||||
stddev -= exp
|
||||
if stddev < 0 {
|
||||
stddev = 0
|
||||
}
|
||||
stddev *= 1 + exp
|
||||
|
||||
// Use x^0.4 to give better spread
|
||||
entropy := math.Pow(stddev, 0.4)
|
||||
|
||||
// 50/50 weight between prediction and histogram distribution
|
||||
return math.Pow((prediction+entropy)/2, 0.9)
|
||||
}
|
||||
|
||||
// ShannonEntropyBits returns the number of bits minimum required to represent
|
||||
// an entropy encoding of the input bytes.
|
||||
// https://en.wiktionary.org/wiki/Shannon_entropy
|
||||
func ShannonEntropyBits(b []byte) int {
|
||||
if len(b) == 0 {
|
||||
return 0
|
||||
}
|
||||
var hist [256]int
|
||||
for _, c := range b {
|
||||
hist[c]++
|
||||
}
|
||||
shannon := float64(0)
|
||||
invTotal := 1.0 / float64(len(b))
|
||||
for _, v := range hist[:] {
|
||||
if v > 0 {
|
||||
n := float64(v)
|
||||
shannon += math.Ceil(-math.Log2(n*invTotal) * n)
|
||||
}
|
||||
}
|
||||
return int(math.Ceil(shannon))
|
||||
}
|
Reference in New Issue
Block a user