Migrate to containerd v1.7.0 and update dependencies

* Updates containerd to v1.7.0 and new binary for 32-bit
Arm OSes.
* Updates Go dependencies - openfaas and external

Signed-off-by: Alex Ellis (OpenFaaS Ltd) <alexellis2@gmail.com>
This commit is contained in:
Alex Ellis (OpenFaaS Ltd)
2023-03-19 10:55:53 +00:00
committed by Alex Ellis
parent 9efd019e86
commit c41c2cd9fc
1133 changed files with 104391 additions and 75499 deletions

View File

@ -67,7 +67,6 @@ func (b *bitReaderBytes) fillFast() {
// 2 bounds checks.
v := b.in[b.off-4 : b.off]
v = v[:4]
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
b.value |= uint64(low) << (b.bitsRead - 32)
b.bitsRead -= 32
@ -88,8 +87,7 @@ func (b *bitReaderBytes) fill() {
return
}
if b.off > 4 {
v := b.in[b.off-4:]
v = v[:4]
v := b.in[b.off-4 : b.off]
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
b.value |= uint64(low) << (b.bitsRead - 32)
b.bitsRead -= 32
@ -179,7 +177,6 @@ func (b *bitReaderShifted) fillFast() {
// 2 bounds checks.
v := b.in[b.off-4 : b.off]
v = v[:4]
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
b.value |= uint64(low) << ((b.bitsRead - 32) & 63)
b.bitsRead -= 32
@ -200,8 +197,7 @@ func (b *bitReaderShifted) fill() {
return
}
if b.off > 4 {
v := b.in[b.off-4:]
v = v[:4]
v := b.in[b.off-4 : b.off]
low := (uint32(v[0])) | (uint32(v[1]) << 8) | (uint32(v[2]) << 16) | (uint32(v[3]) << 24)
b.value |= uint64(low) << ((b.bitsRead - 32) & 63)
b.bitsRead -= 32

View File

@ -60,6 +60,22 @@ func (b *bitWriter) encTwoSymbols(ct cTable, av, bv byte) {
b.nBits += encA.nBits + encB.nBits
}
// encFourSymbols adds up to 32 bits from four symbols.
// It will not check if there is space for them,
// so the caller must ensure that b has been flushed recently.
func (b *bitWriter) encFourSymbols(encA, encB, encC, encD cTableEntry) {
bitsA := encA.nBits
bitsB := bitsA + encB.nBits
bitsC := bitsB + encC.nBits
bitsD := bitsC + encD.nBits
combined := uint64(encA.val) |
(uint64(encB.val) << (bitsA & 63)) |
(uint64(encC.val) << (bitsB & 63)) |
(uint64(encD.val) << (bitsC & 63))
b.bitContainer |= combined << (b.nBits & 63)
b.nBits += bitsD
}
// flush32 will flush out, so there are at least 32 bits available for writing.
func (b *bitWriter) flush32() {
if b.nBits < 32 {

View File

@ -248,8 +248,7 @@ func (s *Scratch) compress1xDo(dst, src []byte) ([]byte, error) {
tmp := src[n : n+4]
// tmp should be len 4
bw.flush32()
bw.encTwoSymbols(cTable, tmp[3], tmp[2])
bw.encTwoSymbols(cTable, tmp[1], tmp[0])
bw.encFourSymbols(cTable[tmp[3]], cTable[tmp[2]], cTable[tmp[1]], cTable[tmp[0]])
}
} else {
for ; n >= 0; n -= 4 {
@ -365,29 +364,29 @@ func (s *Scratch) countSimple(in []byte) (max int, reuse bool) {
m := uint32(0)
if len(s.prevTable) > 0 {
for i, v := range s.count[:] {
if v == 0 {
continue
}
if v > m {
m = v
}
if v > 0 {
s.symbolLen = uint16(i) + 1
if i >= len(s.prevTable) {
reuse = false
} else {
if s.prevTable[i].nBits == 0 {
reuse = false
}
}
s.symbolLen = uint16(i) + 1
if i >= len(s.prevTable) {
reuse = false
} else if s.prevTable[i].nBits == 0 {
reuse = false
}
}
return int(m), reuse
}
for i, v := range s.count[:] {
if v == 0 {
continue
}
if v > m {
m = v
}
if v > 0 {
s.symbolLen = uint16(i) + 1
}
s.symbolLen = uint16(i) + 1
}
return int(m), false
}
@ -484,34 +483,35 @@ func (s *Scratch) buildCTable() error {
// Different from reference implementation.
huffNode0 := s.nodes[0 : huffNodesLen+1]
for huffNode[nonNullRank].count == 0 {
for huffNode[nonNullRank].count() == 0 {
nonNullRank--
}
lowS := int16(nonNullRank)
nodeRoot := nodeNb + lowS - 1
lowN := nodeNb
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count
huffNode[lowS].parent, huffNode[lowS-1].parent = uint16(nodeNb), uint16(nodeNb)
huffNode[nodeNb].setCount(huffNode[lowS].count() + huffNode[lowS-1].count())
huffNode[lowS].setParent(nodeNb)
huffNode[lowS-1].setParent(nodeNb)
nodeNb++
lowS -= 2
for n := nodeNb; n <= nodeRoot; n++ {
huffNode[n].count = 1 << 30
huffNode[n].setCount(1 << 30)
}
// fake entry, strong barrier
huffNode0[0].count = 1 << 31
huffNode0[0].setCount(1 << 31)
// create parents
for nodeNb <= nodeRoot {
var n1, n2 int16
if huffNode0[lowS+1].count < huffNode0[lowN+1].count {
if huffNode0[lowS+1].count() < huffNode0[lowN+1].count() {
n1 = lowS
lowS--
} else {
n1 = lowN
lowN++
}
if huffNode0[lowS+1].count < huffNode0[lowN+1].count {
if huffNode0[lowS+1].count() < huffNode0[lowN+1].count() {
n2 = lowS
lowS--
} else {
@ -519,18 +519,19 @@ func (s *Scratch) buildCTable() error {
lowN++
}
huffNode[nodeNb].count = huffNode0[n1+1].count + huffNode0[n2+1].count
huffNode0[n1+1].parent, huffNode0[n2+1].parent = uint16(nodeNb), uint16(nodeNb)
huffNode[nodeNb].setCount(huffNode0[n1+1].count() + huffNode0[n2+1].count())
huffNode0[n1+1].setParent(nodeNb)
huffNode0[n2+1].setParent(nodeNb)
nodeNb++
}
// distribute weights (unlimited tree height)
huffNode[nodeRoot].nbBits = 0
huffNode[nodeRoot].setNbBits(0)
for n := nodeRoot - 1; n >= startNode; n-- {
huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1
huffNode[n].setNbBits(huffNode[huffNode[n].parent()].nbBits() + 1)
}
for n := uint16(0); n <= nonNullRank; n++ {
huffNode[n].nbBits = huffNode[huffNode[n].parent].nbBits + 1
huffNode[n].setNbBits(huffNode[huffNode[n].parent()].nbBits() + 1)
}
s.actualTableLog = s.setMaxHeight(int(nonNullRank))
maxNbBits := s.actualTableLog
@ -542,7 +543,7 @@ func (s *Scratch) buildCTable() error {
var nbPerRank [tableLogMax + 1]uint16
var valPerRank [16]uint16
for _, v := range huffNode[:nonNullRank+1] {
nbPerRank[v.nbBits]++
nbPerRank[v.nbBits()]++
}
// determine stating value per rank
{
@ -557,7 +558,7 @@ func (s *Scratch) buildCTable() error {
// push nbBits per symbol, symbol order
for _, v := range huffNode[:nonNullRank+1] {
s.cTable[v.symbol].nBits = v.nbBits
s.cTable[v.symbol()].nBits = v.nbBits()
}
// assign value within rank, symbol order
@ -603,12 +604,12 @@ func (s *Scratch) huffSort() {
pos := rank[r].current
rank[r].current++
prev := nodes[(pos-1)&huffNodesMask]
for pos > rank[r].base && c > prev.count {
for pos > rank[r].base && c > prev.count() {
nodes[pos&huffNodesMask] = prev
pos--
prev = nodes[(pos-1)&huffNodesMask]
}
nodes[pos&huffNodesMask] = nodeElt{count: c, symbol: byte(n)}
nodes[pos&huffNodesMask] = makeNodeElt(c, byte(n))
}
}
@ -617,7 +618,7 @@ func (s *Scratch) setMaxHeight(lastNonNull int) uint8 {
huffNode := s.nodes[1 : huffNodesLen+1]
//huffNode = huffNode[: huffNodesLen]
largestBits := huffNode[lastNonNull].nbBits
largestBits := huffNode[lastNonNull].nbBits()
// early exit : no elt > maxNbBits
if largestBits <= maxNbBits {
@ -627,14 +628,14 @@ func (s *Scratch) setMaxHeight(lastNonNull int) uint8 {
baseCost := int(1) << (largestBits - maxNbBits)
n := uint32(lastNonNull)
for huffNode[n].nbBits > maxNbBits {
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits))
huffNode[n].nbBits = maxNbBits
for huffNode[n].nbBits() > maxNbBits {
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits()))
huffNode[n].setNbBits(maxNbBits)
n--
}
// n stops at huffNode[n].nbBits <= maxNbBits
for huffNode[n].nbBits == maxNbBits {
for huffNode[n].nbBits() == maxNbBits {
n--
}
// n end at index of smallest symbol using < maxNbBits
@ -655,10 +656,10 @@ func (s *Scratch) setMaxHeight(lastNonNull int) uint8 {
{
currentNbBits := maxNbBits
for pos := int(n); pos >= 0; pos-- {
if huffNode[pos].nbBits >= currentNbBits {
if huffNode[pos].nbBits() >= currentNbBits {
continue
}
currentNbBits = huffNode[pos].nbBits // < maxNbBits
currentNbBits = huffNode[pos].nbBits() // < maxNbBits
rankLast[maxNbBits-currentNbBits] = uint32(pos)
}
}
@ -675,8 +676,8 @@ func (s *Scratch) setMaxHeight(lastNonNull int) uint8 {
if lowPos == noSymbol {
break
}
highTotal := huffNode[highPos].count
lowTotal := 2 * huffNode[lowPos].count
highTotal := huffNode[highPos].count()
lowTotal := 2 * huffNode[lowPos].count()
if highTotal <= lowTotal {
break
}
@ -692,13 +693,14 @@ func (s *Scratch) setMaxHeight(lastNonNull int) uint8 {
// this rank is no longer empty
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]
}
huffNode[rankLast[nBitsToDecrease]].nbBits++
huffNode[rankLast[nBitsToDecrease]].setNbBits(1 +
huffNode[rankLast[nBitsToDecrease]].nbBits())
if rankLast[nBitsToDecrease] == 0 {
/* special case, reached largest symbol */
rankLast[nBitsToDecrease] = noSymbol
} else {
rankLast[nBitsToDecrease]--
if huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease {
if huffNode[rankLast[nBitsToDecrease]].nbBits() != maxNbBits-nBitsToDecrease {
rankLast[nBitsToDecrease] = noSymbol /* this rank is now empty */
}
}
@ -706,15 +708,15 @@ func (s *Scratch) setMaxHeight(lastNonNull int) uint8 {
for totalCost < 0 { /* Sometimes, cost correction overshoot */
if rankLast[1] == noSymbol { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
for huffNode[n].nbBits == maxNbBits {
for huffNode[n].nbBits() == maxNbBits {
n--
}
huffNode[n+1].nbBits--
huffNode[n+1].setNbBits(huffNode[n+1].nbBits() - 1)
rankLast[1] = n + 1
totalCost++
continue
}
huffNode[rankLast[1]+1].nbBits--
huffNode[rankLast[1]+1].setNbBits(huffNode[rankLast[1]+1].nbBits() - 1)
rankLast[1]++
totalCost++
}
@ -722,9 +724,26 @@ func (s *Scratch) setMaxHeight(lastNonNull int) uint8 {
return maxNbBits
}
type nodeElt struct {
count uint32
parent uint16
symbol byte
nbBits uint8
// A nodeElt is the fields
//
// count uint32
// parent uint16
// symbol byte
// nbBits uint8
//
// in some order, all squashed into an integer so that the compiler
// always loads and stores entire nodeElts instead of separate fields.
type nodeElt uint64
func makeNodeElt(count uint32, symbol byte) nodeElt {
return nodeElt(count) | nodeElt(symbol)<<48
}
func (e *nodeElt) count() uint32 { return uint32(*e) }
func (e *nodeElt) parent() uint16 { return uint16(*e >> 32) }
func (e *nodeElt) symbol() byte { return byte(*e >> 48) }
func (e *nodeElt) nbBits() uint8 { return uint8(*e >> 56) }
func (e *nodeElt) setCount(c uint32) { *e = (*e)&0xffffffff00000000 | nodeElt(c) }
func (e *nodeElt) setParent(p int16) { *e = (*e)&0xffff0000ffffffff | nodeElt(uint16(p))<<32 }
func (e *nodeElt) setNbBits(n uint8) { *e = (*e)&0x00ffffffffffffff | nodeElt(n)<<56 }

View File

@ -61,7 +61,7 @@ func ReadTable(in []byte, s *Scratch) (s2 *Scratch, remain []byte, err error) {
b, err := fse.Decompress(in[:iSize], s.fse)
s.fse.Out = nil
if err != nil {
return s, nil, err
return s, nil, fmt.Errorf("fse decompress returned: %w", err)
}
if len(b) > 255 {
return s, nil, errors.New("corrupt input: output table too large")
@ -763,17 +763,20 @@ func (d *Decoder) decompress4X8bit(dst, src []byte) ([]byte, error) {
d.bufs.Put(buf)
return nil, errors.New("corruption detected: stream overrun 1")
}
copy(out, buf[0][:])
copy(out[dstEvery:], buf[1][:])
copy(out[dstEvery*2:], buf[2][:])
copy(out[dstEvery*3:], buf[3][:])
out = out[bufoff:]
decoded += bufoff * 4
// There must at least be 3 buffers left.
if len(out) < dstEvery*3 {
if len(out)-bufoff < dstEvery*3 {
d.bufs.Put(buf)
return nil, errors.New("corruption detected: stream overrun 2")
}
//copy(out, buf[0][:])
//copy(out[dstEvery:], buf[1][:])
//copy(out[dstEvery*2:], buf[2][:])
*(*[bufoff]byte)(out) = buf[0]
*(*[bufoff]byte)(out[dstEvery:]) = buf[1]
*(*[bufoff]byte)(out[dstEvery*2:]) = buf[2]
*(*[bufoff]byte)(out[dstEvery*3:]) = buf[3]
out = out[bufoff:]
decoded += bufoff * 4
}
}
if off > 0 {
@ -997,17 +1000,22 @@ func (d *Decoder) decompress4X8bitExactly(dst, src []byte) ([]byte, error) {
d.bufs.Put(buf)
return nil, errors.New("corruption detected: stream overrun 1")
}
copy(out, buf[0][:])
copy(out[dstEvery:], buf[1][:])
copy(out[dstEvery*2:], buf[2][:])
copy(out[dstEvery*3:], buf[3][:])
out = out[bufoff:]
decoded += bufoff * 4
// There must at least be 3 buffers left.
if len(out) < dstEvery*3 {
if len(out)-bufoff < dstEvery*3 {
d.bufs.Put(buf)
return nil, errors.New("corruption detected: stream overrun 2")
}
//copy(out, buf[0][:])
//copy(out[dstEvery:], buf[1][:])
//copy(out[dstEvery*2:], buf[2][:])
// copy(out[dstEvery*3:], buf[3][:])
*(*[bufoff]byte)(out) = buf[0]
*(*[bufoff]byte)(out[dstEvery:]) = buf[1]
*(*[bufoff]byte)(out[dstEvery*2:]) = buf[2]
*(*[bufoff]byte)(out[dstEvery*3:]) = buf[3]
out = out[bufoff:]
decoded += bufoff * 4
}
}
if off > 0 {

View File

@ -14,12 +14,14 @@ import (
// decompress4x_main_loop_x86 is an x86 assembler implementation
// of Decompress4X when tablelog > 8.
//
//go:noescape
func decompress4x_main_loop_amd64(ctx *decompress4xContext)
// decompress4x_8b_loop_x86 is an x86 assembler implementation
// of Decompress4X when tablelog <= 8 which decodes 4 entries
// per loop.
//
//go:noescape
func decompress4x_8b_main_loop_amd64(ctx *decompress4xContext)
@ -145,11 +147,13 @@ func (d *Decoder) Decompress4X(dst, src []byte) ([]byte, error) {
// decompress4x_main_loop_x86 is an x86 assembler implementation
// of Decompress1X when tablelog > 8.
//
//go:noescape
func decompress1x_main_loop_amd64(ctx *decompress1xContext)
// decompress4x_main_loop_x86 is an x86 with BMI2 assembler implementation
// of Decompress1X when tablelog > 8.
//
//go:noescape
func decompress1x_main_loop_bmi2(ctx *decompress1xContext)

View File

@ -1,364 +1,352 @@
// Code generated by command: go run gen.go -out ../decompress_amd64.s -pkg=huff0. DO NOT EDIT.
//go:build amd64 && !appengine && !noasm && gc
// +build amd64,!appengine,!noasm,gc
// func decompress4x_main_loop_amd64(ctx *decompress4xContext)
TEXT ·decompress4x_main_loop_amd64(SB), $0-8
XORQ DX, DX
// Preload values
MOVQ ctx+0(FP), AX
MOVBQZX 8(AX), DI
MOVQ 16(AX), SI
MOVQ 48(AX), BX
MOVQ 24(AX), R9
MOVQ 32(AX), R10
MOVQ (AX), R11
MOVQ 16(AX), BX
MOVQ 48(AX), SI
MOVQ 24(AX), R8
MOVQ 32(AX), R9
MOVQ (AX), R10
// Main loop
main_loop:
MOVQ SI, R8
CMPQ R8, BX
XORL DX, DX
CMPQ BX, SI
SETGE DL
// br0.fillFast32()
MOVQ 32(R11), R12
MOVBQZX 40(R11), R13
CMPQ R13, $0x20
MOVQ 32(R10), R11
MOVBQZX 40(R10), R12
CMPQ R12, $0x20
JBE skip_fill0
MOVQ 24(R11), AX
SUBQ $0x20, R13
MOVQ 24(R10), AX
SUBQ $0x20, R12
SUBQ $0x04, AX
MOVQ (R11), R14
MOVQ (R10), R13
// b.value |= uint64(low) << (b.bitsRead & 63)
MOVL (AX)(R14*1), R14
MOVQ R13, CX
SHLQ CL, R14
MOVQ AX, 24(R11)
ORQ R14, R12
MOVL (AX)(R13*1), R13
MOVQ R12, CX
SHLQ CL, R13
MOVQ AX, 24(R10)
ORQ R13, R11
// exhausted = exhausted || (br0.off < 4)
CMPQ AX, $0x04
SETLT AL
ORB AL, DL
// exhausted += (br0.off < 4)
CMPQ AX, $0x04
ADCB $+0, DL
skip_fill0:
// val0 := br0.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v0 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br0.advance(uint8(v0.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val1 := br0.peekTopBits(peekBits)
MOVQ DI, CX
MOVQ R12, R14
SHRQ CL, R14
MOVQ R11, R13
SHRQ CL, R13
// v1 := table[val1&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br0.advance(uint8(v1.entry))
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// these two writes get coalesced
// out[id * dstEvery + 0] = uint8(v0.entry >> 8)
// out[id * dstEvery + 1] = uint8(v1.entry >> 8)
MOVW AX, (R8)
MOVW AX, (BX)
// update the bitreader structure
MOVQ R12, 32(R11)
MOVB R13, 40(R11)
ADDQ R9, R8
MOVQ R11, 32(R10)
MOVB R12, 40(R10)
// br1.fillFast32()
MOVQ 80(R11), R12
MOVBQZX 88(R11), R13
CMPQ R13, $0x20
MOVQ 80(R10), R11
MOVBQZX 88(R10), R12
CMPQ R12, $0x20
JBE skip_fill1
MOVQ 72(R11), AX
SUBQ $0x20, R13
MOVQ 72(R10), AX
SUBQ $0x20, R12
SUBQ $0x04, AX
MOVQ 48(R11), R14
MOVQ 48(R10), R13
// b.value |= uint64(low) << (b.bitsRead & 63)
MOVL (AX)(R14*1), R14
MOVQ R13, CX
SHLQ CL, R14
MOVQ AX, 72(R11)
ORQ R14, R12
MOVL (AX)(R13*1), R13
MOVQ R12, CX
SHLQ CL, R13
MOVQ AX, 72(R10)
ORQ R13, R11
// exhausted = exhausted || (br1.off < 4)
CMPQ AX, $0x04
SETLT AL
ORB AL, DL
// exhausted += (br1.off < 4)
CMPQ AX, $0x04
ADCB $+0, DL
skip_fill1:
// val0 := br1.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v0 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br1.advance(uint8(v0.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val1 := br1.peekTopBits(peekBits)
MOVQ DI, CX
MOVQ R12, R14
SHRQ CL, R14
MOVQ R11, R13
SHRQ CL, R13
// v1 := table[val1&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br1.advance(uint8(v1.entry))
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// these two writes get coalesced
// out[id * dstEvery + 0] = uint8(v0.entry >> 8)
// out[id * dstEvery + 1] = uint8(v1.entry >> 8)
MOVW AX, (R8)
MOVW AX, (BX)(R8*1)
// update the bitreader structure
MOVQ R12, 80(R11)
MOVB R13, 88(R11)
ADDQ R9, R8
MOVQ R11, 80(R10)
MOVB R12, 88(R10)
// br2.fillFast32()
MOVQ 128(R11), R12
MOVBQZX 136(R11), R13
CMPQ R13, $0x20
MOVQ 128(R10), R11
MOVBQZX 136(R10), R12
CMPQ R12, $0x20
JBE skip_fill2
MOVQ 120(R11), AX
SUBQ $0x20, R13
MOVQ 120(R10), AX
SUBQ $0x20, R12
SUBQ $0x04, AX
MOVQ 96(R11), R14
MOVQ 96(R10), R13
// b.value |= uint64(low) << (b.bitsRead & 63)
MOVL (AX)(R14*1), R14
MOVQ R13, CX
SHLQ CL, R14
MOVQ AX, 120(R11)
ORQ R14, R12
MOVL (AX)(R13*1), R13
MOVQ R12, CX
SHLQ CL, R13
MOVQ AX, 120(R10)
ORQ R13, R11
// exhausted = exhausted || (br2.off < 4)
CMPQ AX, $0x04
SETLT AL
ORB AL, DL
// exhausted += (br2.off < 4)
CMPQ AX, $0x04
ADCB $+0, DL
skip_fill2:
// val0 := br2.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v0 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br2.advance(uint8(v0.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val1 := br2.peekTopBits(peekBits)
MOVQ DI, CX
MOVQ R12, R14
SHRQ CL, R14
MOVQ R11, R13
SHRQ CL, R13
// v1 := table[val1&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br2.advance(uint8(v1.entry))
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// these two writes get coalesced
// out[id * dstEvery + 0] = uint8(v0.entry >> 8)
// out[id * dstEvery + 1] = uint8(v1.entry >> 8)
MOVW AX, (R8)
MOVW AX, (BX)(R8*2)
// update the bitreader structure
MOVQ R12, 128(R11)
MOVB R13, 136(R11)
ADDQ R9, R8
MOVQ R11, 128(R10)
MOVB R12, 136(R10)
// br3.fillFast32()
MOVQ 176(R11), R12
MOVBQZX 184(R11), R13
CMPQ R13, $0x20
MOVQ 176(R10), R11
MOVBQZX 184(R10), R12
CMPQ R12, $0x20
JBE skip_fill3
MOVQ 168(R11), AX
SUBQ $0x20, R13
MOVQ 168(R10), AX
SUBQ $0x20, R12
SUBQ $0x04, AX
MOVQ 144(R11), R14
MOVQ 144(R10), R13
// b.value |= uint64(low) << (b.bitsRead & 63)
MOVL (AX)(R14*1), R14
MOVQ R13, CX
SHLQ CL, R14
MOVQ AX, 168(R11)
ORQ R14, R12
MOVL (AX)(R13*1), R13
MOVQ R12, CX
SHLQ CL, R13
MOVQ AX, 168(R10)
ORQ R13, R11
// exhausted = exhausted || (br3.off < 4)
CMPQ AX, $0x04
SETLT AL
ORB AL, DL
// exhausted += (br3.off < 4)
CMPQ AX, $0x04
ADCB $+0, DL
skip_fill3:
// val0 := br3.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v0 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br3.advance(uint8(v0.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val1 := br3.peekTopBits(peekBits)
MOVQ DI, CX
MOVQ R12, R14
SHRQ CL, R14
MOVQ R11, R13
SHRQ CL, R13
// v1 := table[val1&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br3.advance(uint8(v1.entry))
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// these two writes get coalesced
// out[id * dstEvery + 0] = uint8(v0.entry >> 8)
// out[id * dstEvery + 1] = uint8(v1.entry >> 8)
MOVW AX, (R8)
LEAQ (R8)(R8*2), CX
MOVW AX, (BX)(CX*1)
// update the bitreader structure
MOVQ R12, 176(R11)
MOVB R13, 184(R11)
ADDQ $0x02, SI
MOVQ R11, 176(R10)
MOVB R12, 184(R10)
ADDQ $0x02, BX
TESTB DL, DL
JZ main_loop
MOVQ ctx+0(FP), AX
SUBQ 16(AX), SI
SHLQ $0x02, SI
MOVQ SI, 40(AX)
SUBQ 16(AX), BX
SHLQ $0x02, BX
MOVQ BX, 40(AX)
RET
// func decompress4x_8b_main_loop_amd64(ctx *decompress4xContext)
TEXT ·decompress4x_8b_main_loop_amd64(SB), $0-8
XORQ DX, DX
// Preload values
MOVQ ctx+0(FP), CX
MOVBQZX 8(CX), DI
MOVQ 16(CX), BX
MOVQ 48(CX), SI
MOVQ 24(CX), R9
MOVQ 32(CX), R10
MOVQ (CX), R11
MOVQ 24(CX), R8
MOVQ 32(CX), R9
MOVQ (CX), R10
// Main loop
main_loop:
MOVQ BX, R8
CMPQ R8, SI
XORL DX, DX
CMPQ BX, SI
SETGE DL
// br0.fillFast32()
MOVQ 32(R11), R12
MOVBQZX 40(R11), R13
CMPQ R13, $0x20
MOVQ 32(R10), R11
MOVBQZX 40(R10), R12
CMPQ R12, $0x20
JBE skip_fill0
MOVQ 24(R11), R14
SUBQ $0x20, R13
SUBQ $0x04, R14
MOVQ (R11), R15
MOVQ 24(R10), R13
SUBQ $0x20, R12
SUBQ $0x04, R13
MOVQ (R10), R14
// b.value |= uint64(low) << (b.bitsRead & 63)
MOVL (R14)(R15*1), R15
MOVQ R13, CX
SHLQ CL, R15
MOVQ R14, 24(R11)
ORQ R15, R12
MOVL (R13)(R14*1), R14
MOVQ R12, CX
SHLQ CL, R14
MOVQ R13, 24(R10)
ORQ R14, R11
// exhausted = exhausted || (br0.off < 4)
CMPQ R14, $0x04
SETLT AL
ORB AL, DL
// exhausted += (br0.off < 4)
CMPQ R13, $0x04
ADCB $+0, DL
skip_fill0:
// val0 := br0.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v0 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br0.advance(uint8(v0.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val1 := br0.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v1 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br0.advance(uint8(v1.entry)
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
BSWAPL AX
// val2 := br0.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v2 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br0.advance(uint8(v2.entry)
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val3 := br0.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v3 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br0.advance(uint8(v3.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
BSWAPL AX
// these four writes get coalesced
@ -366,88 +354,86 @@ skip_fill0:
// out[id * dstEvery + 1] = uint8(v1.entry >> 8)
// out[id * dstEvery + 3] = uint8(v2.entry >> 8)
// out[id * dstEvery + 4] = uint8(v3.entry >> 8)
MOVL AX, (R8)
MOVL AX, (BX)
// update the bitreader structure
MOVQ R12, 32(R11)
MOVB R13, 40(R11)
ADDQ R9, R8
MOVQ R11, 32(R10)
MOVB R12, 40(R10)
// br1.fillFast32()
MOVQ 80(R11), R12
MOVBQZX 88(R11), R13
CMPQ R13, $0x20
MOVQ 80(R10), R11
MOVBQZX 88(R10), R12
CMPQ R12, $0x20
JBE skip_fill1
MOVQ 72(R11), R14
SUBQ $0x20, R13
SUBQ $0x04, R14
MOVQ 48(R11), R15
MOVQ 72(R10), R13
SUBQ $0x20, R12
SUBQ $0x04, R13
MOVQ 48(R10), R14
// b.value |= uint64(low) << (b.bitsRead & 63)
MOVL (R14)(R15*1), R15
MOVQ R13, CX
SHLQ CL, R15
MOVQ R14, 72(R11)
ORQ R15, R12
MOVL (R13)(R14*1), R14
MOVQ R12, CX
SHLQ CL, R14
MOVQ R13, 72(R10)
ORQ R14, R11
// exhausted = exhausted || (br1.off < 4)
CMPQ R14, $0x04
SETLT AL
ORB AL, DL
// exhausted += (br1.off < 4)
CMPQ R13, $0x04
ADCB $+0, DL
skip_fill1:
// val0 := br1.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v0 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br1.advance(uint8(v0.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val1 := br1.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v1 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br1.advance(uint8(v1.entry)
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
BSWAPL AX
// val2 := br1.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v2 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br1.advance(uint8(v2.entry)
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val3 := br1.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v3 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br1.advance(uint8(v3.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
BSWAPL AX
// these four writes get coalesced
@ -455,88 +441,86 @@ skip_fill1:
// out[id * dstEvery + 1] = uint8(v1.entry >> 8)
// out[id * dstEvery + 3] = uint8(v2.entry >> 8)
// out[id * dstEvery + 4] = uint8(v3.entry >> 8)
MOVL AX, (R8)
MOVL AX, (BX)(R8*1)
// update the bitreader structure
MOVQ R12, 80(R11)
MOVB R13, 88(R11)
ADDQ R9, R8
MOVQ R11, 80(R10)
MOVB R12, 88(R10)
// br2.fillFast32()
MOVQ 128(R11), R12
MOVBQZX 136(R11), R13
CMPQ R13, $0x20
MOVQ 128(R10), R11
MOVBQZX 136(R10), R12
CMPQ R12, $0x20
JBE skip_fill2
MOVQ 120(R11), R14
SUBQ $0x20, R13
SUBQ $0x04, R14
MOVQ 96(R11), R15
MOVQ 120(R10), R13
SUBQ $0x20, R12
SUBQ $0x04, R13
MOVQ 96(R10), R14
// b.value |= uint64(low) << (b.bitsRead & 63)
MOVL (R14)(R15*1), R15
MOVQ R13, CX
SHLQ CL, R15
MOVQ R14, 120(R11)
ORQ R15, R12
MOVL (R13)(R14*1), R14
MOVQ R12, CX
SHLQ CL, R14
MOVQ R13, 120(R10)
ORQ R14, R11
// exhausted = exhausted || (br2.off < 4)
CMPQ R14, $0x04
SETLT AL
ORB AL, DL
// exhausted += (br2.off < 4)
CMPQ R13, $0x04
ADCB $+0, DL
skip_fill2:
// val0 := br2.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v0 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br2.advance(uint8(v0.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val1 := br2.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v1 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br2.advance(uint8(v1.entry)
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
BSWAPL AX
// val2 := br2.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v2 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br2.advance(uint8(v2.entry)
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val3 := br2.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v3 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br2.advance(uint8(v3.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
BSWAPL AX
// these four writes get coalesced
@ -544,88 +528,86 @@ skip_fill2:
// out[id * dstEvery + 1] = uint8(v1.entry >> 8)
// out[id * dstEvery + 3] = uint8(v2.entry >> 8)
// out[id * dstEvery + 4] = uint8(v3.entry >> 8)
MOVL AX, (R8)
MOVL AX, (BX)(R8*2)
// update the bitreader structure
MOVQ R12, 128(R11)
MOVB R13, 136(R11)
ADDQ R9, R8
MOVQ R11, 128(R10)
MOVB R12, 136(R10)
// br3.fillFast32()
MOVQ 176(R11), R12
MOVBQZX 184(R11), R13
CMPQ R13, $0x20
MOVQ 176(R10), R11
MOVBQZX 184(R10), R12
CMPQ R12, $0x20
JBE skip_fill3
MOVQ 168(R11), R14
SUBQ $0x20, R13
SUBQ $0x04, R14
MOVQ 144(R11), R15
MOVQ 168(R10), R13
SUBQ $0x20, R12
SUBQ $0x04, R13
MOVQ 144(R10), R14
// b.value |= uint64(low) << (b.bitsRead & 63)
MOVL (R14)(R15*1), R15
MOVQ R13, CX
SHLQ CL, R15
MOVQ R14, 168(R11)
ORQ R15, R12
MOVL (R13)(R14*1), R14
MOVQ R12, CX
SHLQ CL, R14
MOVQ R13, 168(R10)
ORQ R14, R11
// exhausted = exhausted || (br3.off < 4)
CMPQ R14, $0x04
SETLT AL
ORB AL, DL
// exhausted += (br3.off < 4)
CMPQ R13, $0x04
ADCB $+0, DL
skip_fill3:
// val0 := br3.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v0 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br3.advance(uint8(v0.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val1 := br3.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v1 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br3.advance(uint8(v1.entry)
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
BSWAPL AX
// val2 := br3.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v2 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br3.advance(uint8(v2.entry)
MOVB CH, AH
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
// val3 := br3.peekTopBits(peekBits)
MOVQ R12, R14
MOVQ R11, R13
MOVQ DI, CX
SHRQ CL, R14
SHRQ CL, R13
// v3 := table[val0&mask]
MOVW (R10)(R14*2), CX
MOVW (R9)(R13*2), CX
// br3.advance(uint8(v3.entry)
MOVB CH, AL
SHLQ CL, R12
ADDB CL, R13
SHLQ CL, R11
ADDB CL, R12
BSWAPL AX
// these four writes get coalesced
@ -633,11 +615,12 @@ skip_fill3:
// out[id * dstEvery + 1] = uint8(v1.entry >> 8)
// out[id * dstEvery + 3] = uint8(v2.entry >> 8)
// out[id * dstEvery + 4] = uint8(v3.entry >> 8)
MOVL AX, (R8)
LEAQ (R8)(R8*2), CX
MOVL AX, (BX)(CX*1)
// update the bitreader structure
MOVQ R12, 176(R11)
MOVB R13, 184(R11)
MOVQ R11, 176(R10)
MOVB R12, 184(R10)
ADDQ $0x04, BX
TESTB DL, DL
JZ main_loop
@ -653,7 +636,7 @@ TEXT ·decompress1x_main_loop_amd64(SB), $0-8
MOVQ 16(CX), DX
MOVQ 24(CX), BX
CMPQ BX, $0x04
JB error_max_decoded_size_exeeded
JB error_max_decoded_size_exceeded
LEAQ (DX)(BX*1), BX
MOVQ (CX), SI
MOVQ (SI), R8
@ -668,7 +651,7 @@ main_loop:
// Check if we have room for 4 bytes in the output buffer
LEAQ 4(DX), CX
CMPQ CX, BX
JGE error_max_decoded_size_exeeded
JGE error_max_decoded_size_exceeded
// Decode 4 values
CMPQ R11, $0x20
@ -745,7 +728,7 @@ loop_condition:
RET
// Report error
error_max_decoded_size_exeeded:
error_max_decoded_size_exceeded:
MOVQ ctx+0(FP), AX
MOVQ $-1, CX
MOVQ CX, 40(AX)
@ -758,7 +741,7 @@ TEXT ·decompress1x_main_loop_bmi2(SB), $0-8
MOVQ 16(CX), DX
MOVQ 24(CX), BX
CMPQ BX, $0x04
JB error_max_decoded_size_exeeded
JB error_max_decoded_size_exceeded
LEAQ (DX)(BX*1), BX
MOVQ (CX), SI
MOVQ (SI), R8
@ -773,7 +756,7 @@ main_loop:
// Check if we have room for 4 bytes in the output buffer
LEAQ 4(DX), CX
CMPQ CX, BX
JGE error_max_decoded_size_exeeded
JGE error_max_decoded_size_exceeded
// Decode 4 values
CMPQ R11, $0x20
@ -840,7 +823,7 @@ loop_condition:
RET
// Report error
error_max_decoded_size_exeeded:
error_max_decoded_size_exceeded:
MOVQ ctx+0(FP), AX
MOVQ $-1, CX
MOVQ CX, 40(AX)

View File

@ -122,17 +122,21 @@ func (d *Decoder) Decompress4X(dst, src []byte) ([]byte, error) {
d.bufs.Put(buf)
return nil, errors.New("corruption detected: stream overrun 1")
}
copy(out, buf[0][:])
copy(out[dstEvery:], buf[1][:])
copy(out[dstEvery*2:], buf[2][:])
copy(out[dstEvery*3:], buf[3][:])
out = out[bufoff:]
decoded += bufoff * 4
// There must at least be 3 buffers left.
if len(out) < dstEvery*3 {
if len(out)-bufoff < dstEvery*3 {
d.bufs.Put(buf)
return nil, errors.New("corruption detected: stream overrun 2")
}
//copy(out, buf[0][:])
//copy(out[dstEvery:], buf[1][:])
//copy(out[dstEvery*2:], buf[2][:])
//copy(out[dstEvery*3:], buf[3][:])
*(*[bufoff]byte)(out) = buf[0]
*(*[bufoff]byte)(out[dstEvery:]) = buf[1]
*(*[bufoff]byte)(out[dstEvery*2:]) = buf[2]
*(*[bufoff]byte)(out[dstEvery*3:]) = buf[3]
out = out[bufoff:]
decoded += bufoff * 4
}
}
if off > 0 {