mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-21 14:23:39 +00:00
27
kernel/src/mm/Makefile
Normal file
27
kernel/src/mm/Makefile
Normal file
@ -0,0 +1,27 @@
|
||||
|
||||
CFLAGS += -I .
|
||||
|
||||
|
||||
all:mm.o slab.o mm-stat.o vma.o mmap.o utils.o mmio.o
|
||||
|
||||
mm.o: mm.c
|
||||
$(CC) $(CFLAGS) -c mm.c -o mm.o
|
||||
|
||||
slab.o: slab.c
|
||||
$(CC) $(CFLAGS) -c slab.c -o slab.o
|
||||
|
||||
mm-stat.o: mm-stat.c
|
||||
$(CC) $(CFLAGS) -c mm-stat.c -o mm-stat.o
|
||||
|
||||
vma.o: vma.c
|
||||
$(CC) $(CFLAGS) -c vma.c -o vma.o
|
||||
|
||||
mmap.o: mmap.c
|
||||
$(CC) $(CFLAGS) -c mmap.c -o mmap.o
|
||||
|
||||
utils.o: utils.c
|
||||
$(CC) $(CFLAGS) -c utils.c -o utils.o
|
||||
|
||||
mmio.o: mmio.c
|
||||
$(CC) $(CFLAGS) -c mmio.c -o mmio.o
|
||||
|
55
kernel/src/mm/allocator.rs
Normal file
55
kernel/src/mm/allocator.rs
Normal file
@ -0,0 +1,55 @@
|
||||
use super::gfp::__GFP_ZERO;
|
||||
use crate::include::bindings::bindings::{gfp_t, kfree, kmalloc, PAGE_2M_SIZE};
|
||||
|
||||
use core::alloc::{GlobalAlloc, Layout};
|
||||
|
||||
/// 类kmalloc的分配器应当实现的trait
|
||||
pub trait LocalAlloc {
|
||||
unsafe fn local_alloc(&self, layout: Layout, gfp: gfp_t) -> *mut u8;
|
||||
unsafe fn local_alloc_zeroed(&self, layout: Layout, gfp: gfp_t) -> *mut u8;
|
||||
unsafe fn local_dealloc(&self, ptr: *mut u8, layout: Layout);
|
||||
}
|
||||
|
||||
pub struct KernelAllocator {}
|
||||
|
||||
/// 为内核SLAB分配器实现LocalAlloc的trait
|
||||
impl LocalAlloc for KernelAllocator {
|
||||
unsafe fn local_alloc(&self, layout: Layout, gfp: gfp_t) -> *mut u8 {
|
||||
if layout.size() > (PAGE_2M_SIZE as usize / 2) {
|
||||
return core::ptr::null_mut();
|
||||
}
|
||||
return kmalloc(layout.size() as u64, gfp) as *mut u8;
|
||||
}
|
||||
|
||||
unsafe fn local_alloc_zeroed(&self, layout: Layout, gfp: gfp_t) -> *mut u8 {
|
||||
if layout.size() > (PAGE_2M_SIZE as usize / 2) {
|
||||
return core::ptr::null_mut();
|
||||
}
|
||||
return kmalloc(layout.size() as u64, gfp | __GFP_ZERO) as *mut u8;
|
||||
}
|
||||
#[allow(unused_variables)]
|
||||
unsafe fn local_dealloc(&self, ptr: *mut u8, layout: Layout) {
|
||||
kfree(ptr as *mut ::core::ffi::c_void);
|
||||
}
|
||||
}
|
||||
|
||||
/// 为内核slab分配器实现GlobalAlloc特性
|
||||
unsafe impl GlobalAlloc for KernelAllocator {
|
||||
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
|
||||
self.local_alloc(layout, 0)
|
||||
}
|
||||
|
||||
unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 {
|
||||
self.local_alloc_zeroed(layout, 0)
|
||||
}
|
||||
|
||||
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
|
||||
self.local_dealloc(ptr, layout);
|
||||
}
|
||||
}
|
||||
|
||||
/// 内存分配错误处理函数
|
||||
#[alloc_error_handler]
|
||||
pub fn global_alloc_err_handler(layout: Layout) -> ! {
|
||||
panic!("global_alloc_error, layout: {:?}", layout);
|
||||
}
|
@ -1,667 +0,0 @@
|
||||
/// @Author: longjin@dragonos.org
|
||||
/// @Author: kongweichao@dragonos.org
|
||||
/// @Date: 2023-03-28 16:03:47
|
||||
/// @FilePath: /DragonOS/kernel/src/mm/allocator/buddy.rs
|
||||
/// @Description: 伙伴分配器
|
||||
use crate::arch::MMArch;
|
||||
use crate::mm::allocator::bump::BumpAllocator;
|
||||
use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
|
||||
use crate::mm::{MemoryManagementArch, PhysAddr, VirtAddr};
|
||||
use crate::{kdebug, kerror, kwarn};
|
||||
use core::cmp::{max, min};
|
||||
use core::fmt::Debug;
|
||||
use core::intrinsics::{likely, unlikely};
|
||||
|
||||
use core::{marker::PhantomData, mem};
|
||||
|
||||
// 一个全局变量MAX_ORDER,用来表示buddy算法的最大阶数 [MIN_ORDER, MAX_ORDER)左闭右开区间
|
||||
const MAX_ORDER: usize = 31;
|
||||
// 4KB
|
||||
const MIN_ORDER: usize = 12;
|
||||
|
||||
/// 保存buddy算法中每一页存放的BuddyEntry的信息,占据每个页的起始位置
|
||||
#[derive(Debug)]
|
||||
pub struct PageList<A> {
|
||||
// 页存放entry的数量
|
||||
entry_num: usize,
|
||||
// 下一个页面的地址
|
||||
next_page: PhysAddr,
|
||||
phantom: PhantomData<A>,
|
||||
}
|
||||
|
||||
impl<A> Clone for PageList<A> {
|
||||
fn clone(&self) -> Self {
|
||||
Self {
|
||||
entry_num: self.entry_num,
|
||||
next_page: self.next_page,
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<A> PageList<A> {
|
||||
#[allow(dead_code)]
|
||||
fn empty() -> Self {
|
||||
Self {
|
||||
entry_num: 0,
|
||||
next_page: PhysAddr::new(0),
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
fn new(entry_num: usize, next_page: PhysAddr) -> Self {
|
||||
Self {
|
||||
entry_num,
|
||||
next_page,
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief: 用来表示 buddy 算法中的一个 buddy 块,整体存放在area的头部
|
||||
// 这种方式会出现对齐问题
|
||||
// #[repr(packed)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug)]
|
||||
pub struct BuddyAllocator<A> {
|
||||
// 存放每个阶的空闲“链表”的头部地址
|
||||
free_area: [PhysAddr; (MAX_ORDER - MIN_ORDER) as usize],
|
||||
phantom: PhantomData<A>,
|
||||
}
|
||||
|
||||
impl<A: MemoryManagementArch> BuddyAllocator<A> {
|
||||
const BUDDY_ENTRIES: usize =
|
||||
// 定义一个变量记录buddy表的大小
|
||||
(A::PAGE_SIZE - mem::size_of::<PageList<A>>()) / mem::size_of::<PhysAddr>();
|
||||
|
||||
pub unsafe fn new(mut bump_allocator: BumpAllocator<A>) -> Option<Self> {
|
||||
let initial_free_pages = bump_allocator.usage().free();
|
||||
kdebug!("Free pages before init buddy: {:?}", initial_free_pages);
|
||||
kdebug!("Buddy entries: {}", Self::BUDDY_ENTRIES);
|
||||
// 最高阶的链表页数
|
||||
let max_order_linked_list_page_num = max(
|
||||
1,
|
||||
(((initial_free_pages.data() * A::PAGE_SIZE) >> (MAX_ORDER - 1)) + Self::BUDDY_ENTRIES
|
||||
- 1)
|
||||
/ Self::BUDDY_ENTRIES,
|
||||
);
|
||||
|
||||
let mut free_area: [PhysAddr; (MAX_ORDER - MIN_ORDER) as usize] =
|
||||
[PhysAddr::new(0); (MAX_ORDER - MIN_ORDER) as usize];
|
||||
|
||||
// Buddy初始占用的空间从bump分配
|
||||
for f in free_area.iter_mut() {
|
||||
let curr_page = bump_allocator.allocate_one();
|
||||
// 保存每个阶的空闲链表的头部地址
|
||||
*f = curr_page.unwrap();
|
||||
// 清空当前页
|
||||
core::ptr::write_bytes(MMArch::phys_2_virt(*f)?.data() as *mut u8, 0, A::PAGE_SIZE);
|
||||
|
||||
let page_list: PageList<A> = PageList::new(0, PhysAddr::new(0));
|
||||
Self::write_page(*f, page_list);
|
||||
}
|
||||
|
||||
// 分配最高阶的链表页
|
||||
for _ in 1..max_order_linked_list_page_num {
|
||||
let curr_page = bump_allocator.allocate_one().unwrap();
|
||||
// 清空当前页
|
||||
core::ptr::write_bytes(
|
||||
MMArch::phys_2_virt(curr_page)?.data() as *mut u8,
|
||||
0,
|
||||
A::PAGE_SIZE,
|
||||
);
|
||||
|
||||
let page_list: PageList<A> =
|
||||
PageList::new(0, free_area[Self::order2index((MAX_ORDER - 1) as u8)]);
|
||||
Self::write_page(curr_page, page_list);
|
||||
free_area[Self::order2index((MAX_ORDER - 1) as u8)] = curr_page;
|
||||
}
|
||||
|
||||
let initial_bump_offset = bump_allocator.offset();
|
||||
let pages_to_buddy = bump_allocator.usage().free();
|
||||
kdebug!("pages_to_buddy {:?}", pages_to_buddy);
|
||||
// kdebug!("initial_bump_offset {:#x}", initial_bump_offset);
|
||||
let mut paddr = initial_bump_offset;
|
||||
let mut remain_pages = pages_to_buddy;
|
||||
// 设置entry,这里假设了bump_allocator当前offset之后,所有的area的地址是连续的.
|
||||
// TODO: 这里需要修改,按照area来处理
|
||||
for i in MIN_ORDER..MAX_ORDER {
|
||||
// kdebug!("i {i}, remain pages={}", remain_pages.data());
|
||||
if remain_pages.data() < (1 << (i - MIN_ORDER)) {
|
||||
break;
|
||||
}
|
||||
|
||||
assert!(paddr & ((1 << i) - 1) == 0);
|
||||
|
||||
if likely(i != MAX_ORDER - 1) {
|
||||
// 要填写entry
|
||||
if paddr & (1 << i) != 0 {
|
||||
let page_list_paddr: PhysAddr = free_area[Self::order2index(i as u8)];
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
|
||||
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
|
||||
paddr,
|
||||
);
|
||||
page_list.entry_num += 1;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
|
||||
paddr += 1 << i;
|
||||
remain_pages -= 1 << (i - MIN_ORDER);
|
||||
};
|
||||
} else {
|
||||
// 往最大的阶数的链表中添加entry(注意要考虑到最大阶数的链表可能有多页)
|
||||
// 断言剩余页面数量是MAX_ORDER-1阶的整数倍
|
||||
|
||||
let mut entries = (remain_pages.data() * A::PAGE_SIZE) >> i;
|
||||
let mut page_list_paddr: PhysAddr = free_area[Self::order2index(i as u8)];
|
||||
let block_size = 1usize << i;
|
||||
|
||||
if entries > Self::BUDDY_ENTRIES {
|
||||
// 在第一页填写一些entries
|
||||
let num = entries % Self::BUDDY_ENTRIES;
|
||||
entries -= num;
|
||||
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
|
||||
for _j in 0..num {
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
|
||||
paddr,
|
||||
);
|
||||
page_list.entry_num += 1;
|
||||
paddr += block_size;
|
||||
remain_pages -= 1 << (i - MIN_ORDER);
|
||||
}
|
||||
page_list_paddr = page_list.next_page;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
assert!(!page_list_paddr.is_null());
|
||||
}
|
||||
|
||||
while entries > 0 {
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
|
||||
|
||||
for _ in 0..Self::BUDDY_ENTRIES {
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
|
||||
paddr,
|
||||
);
|
||||
page_list.entry_num += 1;
|
||||
paddr += block_size;
|
||||
remain_pages -= 1 << (i - MIN_ORDER);
|
||||
entries -= 1;
|
||||
if entries == 0 {
|
||||
break;
|
||||
}
|
||||
}
|
||||
page_list_paddr = page_list.next_page;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
|
||||
if likely(entries > 0) {
|
||||
assert!(!page_list_paddr.is_null());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let mut remain_bytes = remain_pages.data() * A::PAGE_SIZE;
|
||||
|
||||
assert!(remain_bytes < (1 << MAX_ORDER - 1));
|
||||
|
||||
for i in (MIN_ORDER..MAX_ORDER).rev() {
|
||||
if remain_bytes & (1 << i) != 0 {
|
||||
let page_list_paddr: PhysAddr = free_area[Self::order2index(i as u8)];
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
|
||||
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
|
||||
paddr,
|
||||
);
|
||||
page_list.entry_num += 1;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
|
||||
paddr += 1 << i;
|
||||
remain_bytes -= 1 << i;
|
||||
}
|
||||
}
|
||||
|
||||
assert!(remain_bytes == 0);
|
||||
assert!(paddr == initial_bump_offset + pages_to_buddy.data() * A::PAGE_SIZE);
|
||||
|
||||
// Self::print_free_area(free_area);
|
||||
let allocator = Self {
|
||||
free_area,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
|
||||
Some(allocator)
|
||||
}
|
||||
/// 获取第j个entry的虚拟地址,
|
||||
/// j从0开始计数
|
||||
pub fn entry_virt_addr(base_addr: PhysAddr, j: usize) -> VirtAddr {
|
||||
let entry_virt_addr = unsafe { A::phys_2_virt(Self::entry_addr(base_addr, j)) };
|
||||
return entry_virt_addr.unwrap();
|
||||
}
|
||||
pub fn entry_addr(base_addr: PhysAddr, j: usize) -> PhysAddr {
|
||||
let entry_addr = base_addr + mem::size_of::<PageList<A>>() + j * mem::size_of::<PhysAddr>();
|
||||
return entry_addr;
|
||||
}
|
||||
pub fn read_page<T>(addr: PhysAddr) -> T {
|
||||
let page_list = unsafe { A::read(A::phys_2_virt(addr).unwrap()) };
|
||||
return page_list;
|
||||
}
|
||||
|
||||
pub fn write_page(curr_page: PhysAddr, page_list: PageList<A>) {
|
||||
// 把物理地址转换为虚拟地址
|
||||
let virt_addr = unsafe { A::phys_2_virt(curr_page) };
|
||||
let virt_addr = virt_addr.unwrap();
|
||||
unsafe { A::write(virt_addr, page_list) };
|
||||
}
|
||||
|
||||
/// 从order转换为free_area的下标
|
||||
///
|
||||
/// # 参数
|
||||
///
|
||||
/// - `order` - order
|
||||
///
|
||||
/// # 返回值
|
||||
///
|
||||
/// free_area的下标
|
||||
#[inline]
|
||||
fn order2index(order: u8) -> usize {
|
||||
(order as usize - MIN_ORDER) as usize
|
||||
}
|
||||
|
||||
/// 从空闲链表的开头,取出1个指定阶数的伙伴块,如果没有,则返回None
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `order` - 伙伴块的阶数
|
||||
fn pop_front(&mut self, order: u8) -> Option<PhysAddr> {
|
||||
let mut alloc_in_specific_order = |spec_order: u8| {
|
||||
// 先尝试在order阶的“空闲链表”的开头位置分配一个伙伴块
|
||||
let mut page_list_addr = self.free_area[Self::order2index(spec_order)];
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_addr);
|
||||
|
||||
// kdebug!("page_list={page_list:?}");
|
||||
|
||||
// 循环删除头部的空闲链表页
|
||||
while page_list.entry_num == 0 {
|
||||
let next_page_list_addr = page_list.next_page;
|
||||
// 找完了,都是空的
|
||||
if next_page_list_addr.is_null() {
|
||||
return None;
|
||||
}
|
||||
|
||||
if !next_page_list_addr.is_null() {
|
||||
// 此时page_list已经没有空闲伙伴块了,又因为非唯一页,需要删除该page_list
|
||||
self.free_area[Self::order2index(spec_order)] = next_page_list_addr;
|
||||
drop(page_list);
|
||||
// kdebug!("FREE: page_list_addr={:b}", page_list_addr.data());
|
||||
unsafe {
|
||||
self.buddy_free(page_list_addr, MMArch::PAGE_SHIFT as u8);
|
||||
}
|
||||
}
|
||||
// 由于buddy_free可能导致首部的链表页发生变化,因此需要重新读取
|
||||
let next_page_list_addr = self.free_area[Self::order2index(spec_order)];
|
||||
assert!(!next_page_list_addr.is_null());
|
||||
page_list = Self::read_page(next_page_list_addr);
|
||||
page_list_addr = next_page_list_addr;
|
||||
}
|
||||
|
||||
// 有空闲页面,直接分配
|
||||
if page_list.entry_num > 0 {
|
||||
let entry: PhysAddr = unsafe {
|
||||
A::read(Self::entry_virt_addr(
|
||||
page_list_addr,
|
||||
page_list.entry_num - 1,
|
||||
))
|
||||
};
|
||||
if entry.is_null() {
|
||||
kerror!(
|
||||
"entry is null, entry={:?}, order={}, entry_num = {}",
|
||||
entry,
|
||||
spec_order,
|
||||
page_list.entry_num - 1
|
||||
);
|
||||
}
|
||||
// kdebug!("entry={entry:?}");
|
||||
// 更新page_list的entry_num
|
||||
page_list.entry_num -= 1;
|
||||
let tmp_current_entry_num = page_list.entry_num;
|
||||
if page_list.entry_num == 0 {
|
||||
if !page_list.next_page.is_null() {
|
||||
// 此时page_list已经没有空闲伙伴块了,又因为非唯一页,需要删除该page_list
|
||||
self.free_area[Self::order2index(spec_order)] = page_list.next_page;
|
||||
drop(page_list);
|
||||
unsafe { self.buddy_free(page_list_addr, MMArch::PAGE_SHIFT as u8) };
|
||||
} else {
|
||||
Self::write_page(page_list_addr, page_list);
|
||||
}
|
||||
} else {
|
||||
// 若entry_num不为0,说明该page_list还有空闲伙伴块,需要更新该page_list
|
||||
// 把更新后的page_list写回
|
||||
Self::write_page(page_list_addr, page_list.clone());
|
||||
}
|
||||
|
||||
// 检测entry 是否对齐
|
||||
if !entry.check_aligned(1 << spec_order) {
|
||||
panic!("entry={:?} is not aligned, spec_order={spec_order}, page_list.entry_num={}", entry,tmp_current_entry_num);
|
||||
}
|
||||
return Some(entry);
|
||||
}
|
||||
return None;
|
||||
};
|
||||
|
||||
let result: Option<PhysAddr> = alloc_in_specific_order(order as u8);
|
||||
// kdebug!("result={:?}", result);
|
||||
if result.is_some() {
|
||||
return result;
|
||||
}
|
||||
// 尝试从更大的链表中分裂
|
||||
|
||||
let mut current_order = (order + 1) as usize;
|
||||
let mut x: Option<PhysAddr> = None;
|
||||
while current_order < MAX_ORDER {
|
||||
x = alloc_in_specific_order(current_order as u8);
|
||||
// kdebug!("current_order={:?}", current_order);
|
||||
if x.is_some() {
|
||||
break;
|
||||
}
|
||||
current_order += 1;
|
||||
}
|
||||
|
||||
// kdebug!("x={:?}", x);
|
||||
// 如果找到一个大的块,就进行分裂
|
||||
if x.is_some() {
|
||||
// 分裂到order阶
|
||||
while current_order > order as usize {
|
||||
current_order -= 1;
|
||||
// 把后面那半块放回空闲链表
|
||||
|
||||
let buddy = *x.as_ref().unwrap() + (1 << current_order);
|
||||
// kdebug!("x={:?}, buddy={:?}", x, buddy);
|
||||
// kdebug!("current_order={:?}, buddy={:?}", current_order, buddy);
|
||||
unsafe { self.buddy_free(buddy, current_order as u8) };
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
return None;
|
||||
}
|
||||
|
||||
/// 从伙伴系统中分配count个页面
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `count`:需要分配的页面数
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 返回分配的页面的物理地址和页面数
|
||||
fn buddy_alloc(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
assert!(count.data().is_power_of_two());
|
||||
// 计算需要分配的阶数
|
||||
let mut order = log2(count.data() as usize);
|
||||
if count.data() & ((1 << order) - 1) != 0 {
|
||||
order += 1;
|
||||
}
|
||||
let order = (order + MIN_ORDER) as u8;
|
||||
if order as usize >= MAX_ORDER {
|
||||
return None;
|
||||
}
|
||||
|
||||
// kdebug!("buddy_alloc: order = {}", order);
|
||||
// 获取该阶数的一个空闲页面
|
||||
let free_addr = self.pop_front(order);
|
||||
// kdebug!(
|
||||
// "buddy_alloc: order = {}, free_addr = {:?}",
|
||||
// order,
|
||||
// free_addr
|
||||
// );
|
||||
return free_addr
|
||||
.map(|addr| (addr, PageFrameCount::new(1 << (order as usize - MIN_ORDER))));
|
||||
}
|
||||
|
||||
/// 释放一个块
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `base` - 块的起始地址
|
||||
/// - `order` - 块的阶数
|
||||
unsafe fn buddy_free(&mut self, mut base: PhysAddr, order: u8) {
|
||||
// kdebug!("buddy_free: base = {:?}, order = {}", base, order);
|
||||
let mut order = order as usize;
|
||||
|
||||
while order < MAX_ORDER {
|
||||
// 检测地址是否合法
|
||||
if base.data() & ((1 << (order)) - 1) != 0 {
|
||||
panic!(
|
||||
"buddy_free: base is not aligned, base = {:#x}, order = {}",
|
||||
base.data(),
|
||||
order
|
||||
);
|
||||
}
|
||||
|
||||
// 在链表中寻找伙伴块
|
||||
// 伙伴块的地址是base ^ (1 << order)
|
||||
let buddy_addr = PhysAddr::new(base.data() ^ (1 << order));
|
||||
|
||||
let first_page_list_paddr = self.free_area[Self::order2index(order as u8)];
|
||||
let mut page_list_paddr = first_page_list_paddr;
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
|
||||
let first_page_list = page_list.clone();
|
||||
|
||||
let mut buddy_entry_virt_vaddr = None;
|
||||
let mut buddy_entry_page_list_paddr = None;
|
||||
// 除非order是最大的,否则尝试查找伙伴块
|
||||
if likely(order != MAX_ORDER - 1) {
|
||||
'outer: loop {
|
||||
for i in 0..page_list.entry_num {
|
||||
let entry_virt_addr = Self::entry_virt_addr(page_list_paddr, i);
|
||||
let entry: PhysAddr = unsafe { A::read(entry_virt_addr) };
|
||||
if entry == buddy_addr {
|
||||
// 找到了伙伴块,记录该entry相关信息,然后退出查找
|
||||
buddy_entry_virt_vaddr = Some(entry_virt_addr);
|
||||
buddy_entry_page_list_paddr = Some(page_list_paddr);
|
||||
break 'outer;
|
||||
}
|
||||
}
|
||||
if page_list.next_page.is_null() {
|
||||
break;
|
||||
}
|
||||
page_list_paddr = page_list.next_page;
|
||||
page_list = Self::read_page(page_list_paddr);
|
||||
}
|
||||
}
|
||||
|
||||
// 如果没有找到伙伴块
|
||||
if buddy_entry_virt_vaddr.is_none() {
|
||||
assert!(
|
||||
page_list.entry_num <= Self::BUDDY_ENTRIES,
|
||||
"buddy_free: page_list.entry_num > Self::BUDDY_ENTRIES"
|
||||
);
|
||||
|
||||
// 当前第一个page_list没有空间了
|
||||
if first_page_list.entry_num == Self::BUDDY_ENTRIES {
|
||||
// 如果当前order是最小的,那么就把这个块当作新的page_list使用
|
||||
let new_page_list_addr = if order == MIN_ORDER {
|
||||
base
|
||||
} else {
|
||||
// 否则分配新的page_list
|
||||
// 请注意,分配之后,有可能当前的entry_num会减1(伙伴块分裂),造成出现整个链表为null的entry数量为Self::BUDDY_ENTRIES+1的情况
|
||||
// 但是不影响,我们在后面插入链表项的时候,会处理这种情况,检查链表中的第2个页是否有空位
|
||||
self.buddy_alloc(PageFrameCount::new(1))
|
||||
.expect("buddy_alloc failed: no enough memory")
|
||||
.0
|
||||
};
|
||||
|
||||
// 清空这个页面
|
||||
core::ptr::write_bytes(
|
||||
A::phys_2_virt(new_page_list_addr)
|
||||
.expect(
|
||||
"Buddy free: failed to get virt address of [new_page_list_addr]",
|
||||
)
|
||||
.as_ptr::<u8>(),
|
||||
0,
|
||||
1 << order,
|
||||
);
|
||||
assert!(
|
||||
first_page_list_paddr == self.free_area[Self::order2index(order as u8)]
|
||||
);
|
||||
// 初始化新的page_list
|
||||
let new_page_list = PageList::new(0, first_page_list_paddr);
|
||||
Self::write_page(new_page_list_addr, new_page_list);
|
||||
self.free_area[Self::order2index(order as u8)] = new_page_list_addr;
|
||||
}
|
||||
|
||||
// 由于上面可能更新了第一个链表页,因此需要重新获取这个值
|
||||
let first_page_list_paddr = self.free_area[Self::order2index(order as u8)];
|
||||
let first_page_list: PageList<A> = Self::read_page(first_page_list_paddr);
|
||||
|
||||
// 检查第二个page_list是否有空位
|
||||
let second_page_list = if first_page_list.next_page.is_null() {
|
||||
None
|
||||
} else {
|
||||
Some(Self::read_page::<PageList<A>>(first_page_list.next_page))
|
||||
};
|
||||
|
||||
let (paddr, mut page_list) = if let Some(second) = second_page_list {
|
||||
// 第二个page_list有空位
|
||||
// 应当符合之前的假设:还有1个空位
|
||||
assert!(second.entry_num == Self::BUDDY_ENTRIES - 1);
|
||||
|
||||
(first_page_list.next_page, second)
|
||||
} else {
|
||||
// 在第一个page list中分配
|
||||
(first_page_list_paddr, first_page_list)
|
||||
};
|
||||
|
||||
// kdebug!("to write entry, page_list_base={paddr:?}, page_list.entry_num={}, value={base:?}", page_list.entry_num);
|
||||
assert!(page_list.entry_num < Self::BUDDY_ENTRIES);
|
||||
// 把要归还的块,写入到链表项中
|
||||
unsafe { A::write(Self::entry_virt_addr(paddr, page_list.entry_num), base) }
|
||||
page_list.entry_num += 1;
|
||||
Self::write_page(paddr, page_list);
|
||||
return;
|
||||
} else {
|
||||
// 如果找到了伙伴块,合并,向上递归
|
||||
|
||||
// 伙伴块所在的表项的虚拟地址
|
||||
let buddy_entry_virt_addr = buddy_entry_virt_vaddr.unwrap();
|
||||
// 伙伴块所在的page_list的物理地址
|
||||
let buddy_entry_page_list_paddr = buddy_entry_page_list_paddr.unwrap();
|
||||
|
||||
let mut page_list_paddr = self.free_area[Self::order2index(order as u8)];
|
||||
let mut page_list = Self::read_page::<PageList<A>>(page_list_paddr);
|
||||
// 找第一个有空闲块的链表页。跳过空闲链表页。不进行回收的原因是担心出现死循环
|
||||
while page_list.entry_num == 0 {
|
||||
if page_list.next_page.is_null() {
|
||||
panic!(
|
||||
"buddy_free: page_list.entry_num == 0 && page_list.next_page.is_null()"
|
||||
);
|
||||
}
|
||||
page_list_paddr = page_list.next_page;
|
||||
page_list = Self::read_page(page_list_paddr);
|
||||
}
|
||||
|
||||
// 如果伙伴块不在第一个链表页,则把第一个链表中的某个空闲块替换到伙伴块的位置
|
||||
if page_list_paddr != buddy_entry_page_list_paddr {
|
||||
let entry: PhysAddr = unsafe {
|
||||
A::read(Self::entry_virt_addr(
|
||||
page_list_paddr,
|
||||
page_list.entry_num - 1,
|
||||
))
|
||||
};
|
||||
// 把这个空闲块写入到伙伴块的位置
|
||||
unsafe {
|
||||
A::write(buddy_entry_virt_addr, entry);
|
||||
}
|
||||
// 设置刚才那个entry为空
|
||||
unsafe {
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num - 1),
|
||||
PhysAddr::new(0),
|
||||
);
|
||||
}
|
||||
// 更新当前链表页的统计数据
|
||||
page_list.entry_num -= 1;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
} else {
|
||||
// 伙伴块所在的链表页就是第一个链表页
|
||||
let last_entry: PhysAddr = unsafe {
|
||||
A::read(Self::entry_virt_addr(
|
||||
page_list_paddr,
|
||||
page_list.entry_num - 1,
|
||||
))
|
||||
};
|
||||
|
||||
// 如果最后一个空闲块不是伙伴块,则把最后一个空闲块移动到伙伴块的位置
|
||||
// 否则后面的操作也将删除这个伙伴块
|
||||
if last_entry != buddy_addr {
|
||||
unsafe {
|
||||
A::write(buddy_entry_virt_addr, last_entry);
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num - 1),
|
||||
PhysAddr::new(0),
|
||||
);
|
||||
}
|
||||
} else {
|
||||
unsafe {
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num - 1),
|
||||
PhysAddr::new(0),
|
||||
);
|
||||
}
|
||||
}
|
||||
// 更新当前链表页的统计数据
|
||||
page_list.entry_num -= 1;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
}
|
||||
}
|
||||
base = min(base, buddy_addr);
|
||||
order += 1;
|
||||
}
|
||||
// 走到这一步,order应该为MAX_ORDER-1
|
||||
assert!(order == MAX_ORDER - 1);
|
||||
}
|
||||
}
|
||||
|
||||
impl<A: MemoryManagementArch> FrameAllocator for BuddyAllocator<A> {
|
||||
unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
return self.buddy_alloc(count);
|
||||
}
|
||||
|
||||
/// 释放一个块
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `base` - 块的起始地址
|
||||
/// - `count` - 块的页数(必须是2的幂)
|
||||
///
|
||||
/// ## Panic
|
||||
///
|
||||
/// 如果count不是2的幂,会panic
|
||||
unsafe fn free(&mut self, base: PhysAddr, count: PageFrameCount) {
|
||||
// 要求count是2的幂
|
||||
if unlikely(!count.data().is_power_of_two()) {
|
||||
kwarn!("buddy free: count is not power of two");
|
||||
}
|
||||
let mut order = log2(count.data() as usize);
|
||||
if count.data() & ((1 << order) - 1) != 0 {
|
||||
order += 1;
|
||||
}
|
||||
let order = (order + MIN_ORDER) as u8;
|
||||
// kdebug!("free: base={:?}, count={:?}", base, count);
|
||||
self.buddy_free(base, order);
|
||||
}
|
||||
|
||||
unsafe fn usage(&self) -> PageFrameUsage {
|
||||
todo!("BuddyAllocator::usage")
|
||||
}
|
||||
}
|
||||
|
||||
/// 一个用于计算整数的对数的函数,会向下取整。(由于内核不能进行浮点运算,因此需要这个函数)
|
||||
fn log2(x: usize) -> usize {
|
||||
let leading_zeros = x.leading_zeros() as usize;
|
||||
let log2x = 63 - leading_zeros;
|
||||
return log2x;
|
||||
}
|
@ -1,112 +0,0 @@
|
||||
/// @Auther: Kong
|
||||
/// @Date: 2023-03-27 06:54:08
|
||||
/// @FilePath: /DragonOS/kernel/src/mm/allocator/bump.rs
|
||||
/// @Description: bump allocator线性分配器
|
||||
use super::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
|
||||
use crate::mm::{MemoryManagementArch, PhysAddr, PhysMemoryArea};
|
||||
use core::marker::PhantomData;
|
||||
|
||||
/// 线性分配器
|
||||
pub struct BumpAllocator<MMA> {
|
||||
// 表示可用物理内存区域的数组。每个 PhysMemoryArea 结构体描述一个物理内存区域的起始地址和大小。
|
||||
areas: &'static [PhysMemoryArea],
|
||||
// 表示当前分配的物理内存的偏移量.
|
||||
offset: usize,
|
||||
// 一个占位类型,用于标记 A 类型在结构体中的存在。但是,它并不会占用任何内存空间,因为它的大小为 0。
|
||||
phantom: PhantomData<MMA>,
|
||||
}
|
||||
|
||||
/// 为BumpAllocator实现FrameAllocator
|
||||
impl<MMA: MemoryManagementArch> BumpAllocator<MMA> {
|
||||
/// @brief: 创建一个线性分配器
|
||||
/// @param Fareas 当前的内存区域
|
||||
/// @param offset 当前的偏移量
|
||||
/// @return 分配器本身
|
||||
pub fn new(areas: &'static [PhysMemoryArea], offset: usize) -> Self {
|
||||
Self {
|
||||
areas,
|
||||
offset,
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
// @brief 获取页帧使用情况
|
||||
pub fn areas(&self) -> &'static [PhysMemoryArea] {
|
||||
return self.areas;
|
||||
}
|
||||
// @brief 获取当前分配的物理内存的偏移量
|
||||
pub fn offset(&self) -> usize {
|
||||
return self.offset;
|
||||
}
|
||||
}
|
||||
|
||||
impl<MMA: MemoryManagementArch> FrameAllocator for BumpAllocator<MMA> {
|
||||
/// @brief: 分配count个物理页帧
|
||||
/// @param mut self
|
||||
/// @param count 分配的页帧数量
|
||||
/// @return 分配后的物理地址
|
||||
unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
let mut offset = self.offset();
|
||||
// 遍历所有的物理内存区域
|
||||
for area in self.areas().iter() {
|
||||
// 将area的base地址与PAGE_SIZE对齐,对齐时向上取整
|
||||
// let area_base = (area.base.data() + MMA::PAGE_SHIFT) & !(MMA::PAGE_SHIFT);
|
||||
let area_base = (area.base.data() + (MMA::PAGE_SIZE - 1)) & !(MMA::PAGE_SIZE - 1);
|
||||
// 将area的末尾地址与PAGE_SIZE对齐,对齐时向下取整
|
||||
// let area_end = (area.base.data() + area.size) & !(MMA::PAGE_SHIFT);
|
||||
let area_end = (area.base.data() + area.size) & !(MMA::PAGE_SIZE - 1);
|
||||
|
||||
// 如果offset大于area_end,说明当前的物理内存区域已经分配完了,需要跳到下一个物理内存区域
|
||||
if offset >= area_end {
|
||||
continue;
|
||||
}
|
||||
|
||||
// 如果offset小于area_base ,说明当前的物理内存区域还没有分配过页帧,将offset设置为area_base
|
||||
if offset < area_base {
|
||||
offset = area_base;
|
||||
} else if offset < area_end {
|
||||
// 将offset对齐到PAGE_SIZE
|
||||
offset = (offset + (MMA::PAGE_SIZE - 1)) & !(MMA::PAGE_SIZE - 1);
|
||||
}
|
||||
// 如果当前offset到area_end的距离大于等于count.data() * PAGE_SIZE,说明当前的物理内存区域足以分配count个页帧
|
||||
if offset + count.data() * MMA::PAGE_SIZE <= area_end {
|
||||
let res_page_phys = offset;
|
||||
// 将offset增加至分配后的内存
|
||||
self.offset = offset + count.data() * MMA::PAGE_SIZE;
|
||||
|
||||
return Some((PhysAddr(res_page_phys), count));
|
||||
}
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
unsafe fn free(&mut self, _address: PhysAddr, _count: PageFrameCount) {
|
||||
// TODO: 支持释放页帧
|
||||
unimplemented!("BumpAllocator::free not implemented");
|
||||
}
|
||||
/// @brief: 获取内存区域页帧的使用情况
|
||||
/// @param self
|
||||
/// @return 页帧的使用情况
|
||||
unsafe fn usage(&self) -> PageFrameUsage {
|
||||
let mut total = 0;
|
||||
let mut used = 0;
|
||||
for area in self.areas().iter() {
|
||||
// 将area的base地址与PAGE_SIZE对齐,对其时向上取整
|
||||
let area_base = (area.base.data() + MMA::PAGE_SHIFT) & !(MMA::PAGE_SHIFT);
|
||||
// 将area的末尾地址与PAGE_SIZE对齐,对其时向下取整
|
||||
let area_end = (area.base.data() + area.size) & !(MMA::PAGE_SHIFT);
|
||||
|
||||
total += (area_end - area_base) >> MMA::PAGE_SHIFT;
|
||||
// 如果offset大于area_end,说明当前物理区域被分配完,都需要加到used中
|
||||
if self.offset >= area_end {
|
||||
used += (area_end - area_base) >> MMA::PAGE_SHIFT;
|
||||
} else if self.offset < area_base {
|
||||
// 如果offset小于area_base,说明当前物理区域还没有分配过页帧,都不需要加到used中
|
||||
continue;
|
||||
} else {
|
||||
used += (self.offset - area_base) >> MMA::PAGE_SHIFT;
|
||||
}
|
||||
}
|
||||
let frame = PageFrameUsage::new(PageFrameCount::new(used), PageFrameCount::new(total));
|
||||
return frame;
|
||||
}
|
||||
}
|
@ -1,101 +0,0 @@
|
||||
use crate::{
|
||||
arch::mm::LockedFrameAllocator,
|
||||
libs::align::page_align_up,
|
||||
mm::{MMArch, MemoryManagementArch, VirtAddr},
|
||||
};
|
||||
|
||||
use core::{
|
||||
alloc::{AllocError, GlobalAlloc, Layout},
|
||||
intrinsics::unlikely,
|
||||
ptr::NonNull,
|
||||
};
|
||||
|
||||
use super::page_frame::{FrameAllocator, PageFrameCount};
|
||||
|
||||
/// 类kmalloc的分配器应当实现的trait
|
||||
pub trait LocalAlloc {
|
||||
unsafe fn local_alloc(&self, layout: Layout) -> *mut u8;
|
||||
unsafe fn local_alloc_zeroed(&self, layout: Layout) -> *mut u8;
|
||||
unsafe fn local_dealloc(&self, ptr: *mut u8, layout: Layout);
|
||||
}
|
||||
|
||||
pub struct KernelAllocator;
|
||||
|
||||
impl KernelAllocator {
|
||||
unsafe fn alloc_in_buddy(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||||
// 计算需要申请的页数,向上取整
|
||||
let count = (page_align_up(layout.size()) / MMArch::PAGE_SIZE).next_power_of_two();
|
||||
let page_frame_count = PageFrameCount::new(count);
|
||||
let (phy_addr, allocated_frame_count) = LockedFrameAllocator
|
||||
.allocate(page_frame_count)
|
||||
.ok_or(AllocError)?;
|
||||
|
||||
let virt_addr = unsafe { MMArch::phys_2_virt(phy_addr).ok_or(AllocError)? };
|
||||
if unlikely(virt_addr.is_null()) {
|
||||
return Err(AllocError);
|
||||
}
|
||||
|
||||
let slice = unsafe {
|
||||
core::slice::from_raw_parts_mut(
|
||||
virt_addr.data() as *mut u8,
|
||||
allocated_frame_count.data() * MMArch::PAGE_SIZE,
|
||||
)
|
||||
};
|
||||
return Ok(NonNull::from(slice));
|
||||
}
|
||||
|
||||
unsafe fn free_in_buddy(&self, ptr: *mut u8, layout: Layout) {
|
||||
// 由于buddy分配的页数量是2的幂,因此释放的时候也需要按照2的幂向上取整。
|
||||
let count = (page_align_up(layout.size()) / MMArch::PAGE_SIZE).next_power_of_two();
|
||||
let page_frame_count = PageFrameCount::new(count);
|
||||
let phy_addr = MMArch::virt_2_phys(VirtAddr::new(ptr as usize)).unwrap();
|
||||
LockedFrameAllocator.free(phy_addr, page_frame_count);
|
||||
}
|
||||
}
|
||||
|
||||
/// 为内核SLAB分配器实现LocalAlloc的trait
|
||||
impl LocalAlloc for KernelAllocator {
|
||||
unsafe fn local_alloc(&self, layout: Layout) -> *mut u8 {
|
||||
return self
|
||||
.alloc_in_buddy(layout)
|
||||
.map(|x| x.as_mut_ptr() as *mut u8)
|
||||
.unwrap_or(core::ptr::null_mut() as *mut u8);
|
||||
}
|
||||
|
||||
unsafe fn local_alloc_zeroed(&self, layout: Layout) -> *mut u8 {
|
||||
return self
|
||||
.alloc_in_buddy(layout)
|
||||
.map(|x| {
|
||||
let ptr: *mut u8 = x.as_mut_ptr();
|
||||
core::ptr::write_bytes(ptr, 0, x.len());
|
||||
ptr
|
||||
})
|
||||
.unwrap_or(core::ptr::null_mut() as *mut u8);
|
||||
}
|
||||
|
||||
unsafe fn local_dealloc(&self, ptr: *mut u8, layout: Layout) {
|
||||
self.free_in_buddy(ptr, layout);
|
||||
}
|
||||
}
|
||||
|
||||
/// 为内核slab分配器实现GlobalAlloc特性
|
||||
unsafe impl GlobalAlloc for KernelAllocator {
|
||||
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
|
||||
return self.local_alloc(layout);
|
||||
// self.local_alloc_zeroed(layout, 0)
|
||||
}
|
||||
|
||||
unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 {
|
||||
self.local_alloc_zeroed(layout)
|
||||
}
|
||||
|
||||
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
|
||||
self.local_dealloc(ptr, layout);
|
||||
}
|
||||
}
|
||||
|
||||
/// 内存分配错误处理函数
|
||||
#[alloc_error_handler]
|
||||
pub fn global_alloc_err_handler(layout: Layout) -> ! {
|
||||
panic!("global_alloc_error, layout: {:?}", layout);
|
||||
}
|
@ -1,5 +0,0 @@
|
||||
pub mod buddy;
|
||||
pub mod bump;
|
||||
pub mod kernel_allocator;
|
||||
pub mod page_frame;
|
||||
pub mod slab;
|
@ -1,338 +0,0 @@
|
||||
use core::{
|
||||
intrinsics::unlikely,
|
||||
ops::{Add, AddAssign, Mul, Sub, SubAssign},
|
||||
};
|
||||
|
||||
use crate::{
|
||||
arch::{mm::LockedFrameAllocator, MMArch},
|
||||
mm::{MemoryManagementArch, PhysAddr, VirtAddr},
|
||||
};
|
||||
|
||||
/// @brief 物理页帧的表示
|
||||
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
|
||||
pub struct PhysPageFrame {
|
||||
/// 物理页页号
|
||||
number: usize,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl PhysPageFrame {
|
||||
pub fn new(paddr: PhysAddr) -> Self {
|
||||
return Self {
|
||||
number: paddr.data() / MMArch::PAGE_SIZE,
|
||||
};
|
||||
}
|
||||
|
||||
/// @brief 获取当前页对应的物理地址
|
||||
pub fn phys_address(&self) -> PhysAddr {
|
||||
return PhysAddr::new(self.number * MMArch::PAGE_SIZE);
|
||||
}
|
||||
|
||||
pub fn next_by(&self, n: usize) -> Self {
|
||||
return Self {
|
||||
number: self.number + n,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn next(&self) -> Self {
|
||||
return self.next_by(1);
|
||||
}
|
||||
|
||||
/// 构造物理页帧的迭代器,范围为[start, end)
|
||||
pub fn iter_range(start: Self, end: Self) -> PhysPageFrameIter {
|
||||
return PhysPageFrameIter::new(start, end);
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 物理页帧的迭代器
|
||||
#[derive(Debug)]
|
||||
pub struct PhysPageFrameIter {
|
||||
current: PhysPageFrame,
|
||||
/// 结束的物理页帧(不包含)
|
||||
end: PhysPageFrame,
|
||||
}
|
||||
|
||||
impl PhysPageFrameIter {
|
||||
pub fn new(start: PhysPageFrame, end: PhysPageFrame) -> Self {
|
||||
return Self {
|
||||
current: start,
|
||||
end,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl Iterator for PhysPageFrameIter {
|
||||
type Item = PhysPageFrame;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if unlikely(self.current == self.end) {
|
||||
return None;
|
||||
}
|
||||
let current = self.current.next();
|
||||
return Some(current);
|
||||
}
|
||||
}
|
||||
|
||||
/// 虚拟页帧的表示
|
||||
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
|
||||
pub struct VirtPageFrame {
|
||||
/// 虚拟页页号
|
||||
number: usize,
|
||||
}
|
||||
|
||||
impl VirtPageFrame {
|
||||
pub fn new(vaddr: VirtAddr) -> Self {
|
||||
return Self {
|
||||
number: vaddr.data() / MMArch::PAGE_SIZE,
|
||||
};
|
||||
}
|
||||
|
||||
/// 获取当前虚拟页对应的虚拟地址
|
||||
pub fn virt_address(&self) -> VirtAddr {
|
||||
return VirtAddr::new(self.number * MMArch::PAGE_SIZE);
|
||||
}
|
||||
|
||||
pub fn next_by(&self, n: usize) -> Self {
|
||||
return Self {
|
||||
number: self.number + n,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn next(&self) -> Self {
|
||||
return self.next_by(1);
|
||||
}
|
||||
|
||||
/// 构造虚拟页帧的迭代器,范围为[start, end)
|
||||
pub fn iter_range(start: Self, end: Self) -> VirtPageFrameIter {
|
||||
return VirtPageFrameIter {
|
||||
current: start,
|
||||
end,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn add(&self, n: PageFrameCount) -> Self {
|
||||
return Self {
|
||||
number: self.number + n.data(),
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/// 虚拟页帧的迭代器
|
||||
#[derive(Debug)]
|
||||
pub struct VirtPageFrameIter {
|
||||
current: VirtPageFrame,
|
||||
/// 结束的虚拟页帧(不包含)
|
||||
end: VirtPageFrame,
|
||||
}
|
||||
|
||||
impl VirtPageFrameIter {
|
||||
/// @brief 构造虚拟页帧的迭代器,范围为[start, end)
|
||||
pub fn new(start: VirtPageFrame, end: VirtPageFrame) -> Self {
|
||||
return Self {
|
||||
current: start,
|
||||
end,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl Iterator for VirtPageFrameIter {
|
||||
type Item = VirtPageFrame;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if unlikely(self.current == self.end) {
|
||||
return None;
|
||||
}
|
||||
let current: VirtPageFrame = self.current;
|
||||
self.current = self.current.next_by(1);
|
||||
return Some(current);
|
||||
}
|
||||
}
|
||||
|
||||
/// 页帧使用的数量
|
||||
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
|
||||
#[repr(transparent)]
|
||||
pub struct PageFrameCount(usize);
|
||||
|
||||
impl PageFrameCount {
|
||||
// @brief 初始化PageFrameCount
|
||||
pub const fn new(count: usize) -> Self {
|
||||
return Self(count);
|
||||
}
|
||||
// @brief 获取页帧数量
|
||||
pub fn data(&self) -> usize {
|
||||
return self.0;
|
||||
}
|
||||
|
||||
/// 计算这一段页帧占用的字节数
|
||||
pub fn bytes(&self) -> usize {
|
||||
return self.0 * MMArch::PAGE_SIZE;
|
||||
}
|
||||
|
||||
/// 将字节数转换为页帧数量
|
||||
///
|
||||
/// 如果字节数不是页帧大小的整数倍,则返回None. 否则返回页帧数量
|
||||
pub fn from_bytes(bytes: usize) -> Option<Self> {
|
||||
if bytes & MMArch::PAGE_OFFSET_MASK != 0 {
|
||||
return None;
|
||||
} else {
|
||||
return Some(Self(bytes / MMArch::PAGE_SIZE));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: Self) -> Self::Output {
|
||||
return Self(self.0 + rhs.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for PageFrameCount {
|
||||
fn add_assign(&mut self, rhs: Self) {
|
||||
self.0 += rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: Self) -> Self::Output {
|
||||
return Self(self.0 - rhs.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for PageFrameCount {
|
||||
fn sub_assign(&mut self, rhs: Self) {
|
||||
self.0 -= rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, rhs: Self) -> Self::Output {
|
||||
return Self(self.0 * rhs.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<usize> for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 + rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign<usize> for PageFrameCount {
|
||||
fn add_assign(&mut self, rhs: usize) {
|
||||
self.0 += rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<usize> for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 - rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign<usize> for PageFrameCount {
|
||||
fn sub_assign(&mut self, rhs: usize) {
|
||||
self.0 -= rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<usize> for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 * rhs);
|
||||
}
|
||||
}
|
||||
|
||||
// 页帧使用情况
|
||||
#[derive(Debug)]
|
||||
pub struct PageFrameUsage {
|
||||
used: PageFrameCount,
|
||||
total: PageFrameCount,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl PageFrameUsage {
|
||||
/// @brief: 初始化FrameUsage
|
||||
/// @param PageFrameCount used 已使用的页帧数量
|
||||
/// @param PageFrameCount total 总的页帧数量
|
||||
pub fn new(used: PageFrameCount, total: PageFrameCount) -> Self {
|
||||
return Self { used, total };
|
||||
}
|
||||
// @brief 获取已使用的页帧数量
|
||||
pub fn used(&self) -> PageFrameCount {
|
||||
return self.used;
|
||||
}
|
||||
// @brief 获取空闲的页帧数量
|
||||
pub fn free(&self) -> PageFrameCount {
|
||||
return PageFrameCount(self.total.0 - self.used.0);
|
||||
}
|
||||
// @brief 获取总的页帧数量
|
||||
pub fn total(&self) -> PageFrameCount {
|
||||
return self.total;
|
||||
}
|
||||
}
|
||||
|
||||
/// 能够分配页帧的分配器需要实现的trait
|
||||
pub trait FrameAllocator {
|
||||
// @brief 分配count个页帧
|
||||
unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)>;
|
||||
|
||||
// @brief 通过地址释放count个页帧
|
||||
unsafe fn free(&mut self, address: PhysAddr, count: PageFrameCount);
|
||||
// @brief 分配一个页帧
|
||||
unsafe fn allocate_one(&mut self) -> Option<PhysAddr> {
|
||||
return self.allocate(PageFrameCount::new(1)).map(|(addr, _)| addr);
|
||||
}
|
||||
// @brief 通过地址释放一个页帧
|
||||
unsafe fn free_one(&mut self, address: PhysAddr) {
|
||||
return self.free(address, PageFrameCount::new(1));
|
||||
}
|
||||
// @brief 获取页帧使用情况
|
||||
unsafe fn usage(&self) -> PageFrameUsage;
|
||||
}
|
||||
|
||||
/// @brief 通过一个 &mut T 的引用来对一个实现了 FrameAllocator trait 的类型进行调用,使代码更加灵活
|
||||
impl<T: FrameAllocator> FrameAllocator for &mut T {
|
||||
unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
return T::allocate(self, count);
|
||||
}
|
||||
unsafe fn free(&mut self, address: PhysAddr, count: PageFrameCount) {
|
||||
return T::free(self, address, count);
|
||||
}
|
||||
unsafe fn allocate_one(&mut self) -> Option<PhysAddr> {
|
||||
return T::allocate_one(self);
|
||||
}
|
||||
unsafe fn free_one(&mut self, address: PhysAddr) {
|
||||
return T::free_one(self, address);
|
||||
}
|
||||
unsafe fn usage(&self) -> PageFrameUsage {
|
||||
return T::usage(self);
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 从全局的页帧分配器中分配连续count个页帧
|
||||
///
|
||||
/// @param count 请求分配的页帧数量
|
||||
pub unsafe fn allocate_page_frames(count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
let frame = unsafe { LockedFrameAllocator.allocate(count)? };
|
||||
return Some(frame);
|
||||
}
|
||||
|
||||
/// @brief 向全局页帧分配器释放连续count个页帧
|
||||
///
|
||||
/// @param frame 要释放的第一个页帧
|
||||
/// @param count 要释放的页帧数量 (必须是2的n次幂)
|
||||
pub unsafe fn deallocate_page_frames(frame: PhysPageFrame, count: PageFrameCount) {
|
||||
unsafe {
|
||||
LockedFrameAllocator.free(frame.phys_address(), count);
|
||||
}
|
||||
}
|
@ -1,123 +0,0 @@
|
||||
//! 当前slab分配器暂时不使用,等待后续完善后合并主线
|
||||
#![allow(dead_code)]
|
||||
|
||||
use core::alloc::Layout;
|
||||
|
||||
// 定义Slab,用来存放空闲块
|
||||
pub struct Slab {
|
||||
block_size: usize,
|
||||
free_block_list: FreeBlockList,
|
||||
}
|
||||
|
||||
impl Slab {
|
||||
/// @brief: 初始化一个slab
|
||||
/// @param {usize} start_addr
|
||||
/// @param {usize} slab_size
|
||||
/// @param {usize} block_size
|
||||
pub unsafe fn new(start_addr: usize, slab_size: usize, block_size: usize) -> Slab {
|
||||
let blocks_num = slab_size / block_size;
|
||||
return Slab {
|
||||
block_size: block_size,
|
||||
free_block_list: FreeBlockList::new(start_addr, block_size, blocks_num),
|
||||
};
|
||||
}
|
||||
|
||||
/// @brief: 获取slab中可用的block数
|
||||
pub fn used_blocks(&self) -> usize {
|
||||
return self.free_block_list.len();
|
||||
}
|
||||
|
||||
/// @brief: 扩大free_block_list
|
||||
/// @param {*} mut
|
||||
/// @param {usize} start_addr
|
||||
/// @param {usize} slab_size
|
||||
pub fn grow(&mut self, start_addr: usize, slab_size: usize) {
|
||||
let num_of_blocks = slab_size / self.block_size;
|
||||
let mut block_list =
|
||||
unsafe { FreeBlockList::new(start_addr, self.block_size, num_of_blocks) };
|
||||
// 将新链表接到原链表的后面
|
||||
while let Some(block) = block_list.pop() {
|
||||
self.free_block_list.push(block);
|
||||
}
|
||||
}
|
||||
/// @brief: 从slab中分配一个block
|
||||
/// @return 分配的内存地址
|
||||
pub fn allocate(&mut self, _layout: Layout) -> Option<*mut u8> {
|
||||
match self.free_block_list.pop() {
|
||||
Some(block) => return Some(block.addr() as *mut u8),
|
||||
None => return None,
|
||||
}
|
||||
}
|
||||
/// @brief: 将block归还给slab
|
||||
pub fn free(&mut self, ptr: *mut u8) {
|
||||
let ptr = ptr as *mut FreeBlock;
|
||||
unsafe {
|
||||
self.free_block_list.push(&mut *ptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
/// slab中的空闲块
|
||||
struct FreeBlockList {
|
||||
len: usize,
|
||||
head: Option<&'static mut FreeBlock>,
|
||||
}
|
||||
|
||||
impl FreeBlockList {
|
||||
unsafe fn new(start_addr: usize, block_size: usize, num_of_blocks: usize) -> FreeBlockList {
|
||||
let mut new_list = FreeBlockList::new_empty();
|
||||
for i in (0..num_of_blocks).rev() {
|
||||
// 从后往前分配,避免内存碎片
|
||||
let new_block = (start_addr + i * block_size) as *mut FreeBlock;
|
||||
new_list.push(&mut *new_block);
|
||||
}
|
||||
return new_list;
|
||||
}
|
||||
|
||||
fn new_empty() -> FreeBlockList {
|
||||
return FreeBlockList { len: 0, head: None };
|
||||
}
|
||||
|
||||
fn len(&self) -> usize {
|
||||
return self.len;
|
||||
}
|
||||
|
||||
/// @brief: 将空闲块从链表中弹出
|
||||
fn pop(&mut self) -> Option<&'static mut FreeBlock> {
|
||||
// 从链表中弹出一个空闲块
|
||||
let block = self.head.take().map(|node| {
|
||||
self.head = node.next.take();
|
||||
self.len -= 1;
|
||||
node
|
||||
});
|
||||
return block;
|
||||
}
|
||||
|
||||
/// @brief: 将空闲块压入链表
|
||||
fn push(&mut self, free_block: &'static mut FreeBlock) {
|
||||
free_block.next = self.head.take();
|
||||
self.len += 1;
|
||||
self.head = Some(free_block);
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
return self.head.is_none();
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for FreeBlockList {
|
||||
fn drop(&mut self) {
|
||||
while let Some(_) = self.pop() {}
|
||||
}
|
||||
}
|
||||
|
||||
struct FreeBlock {
|
||||
next: Option<&'static mut FreeBlock>,
|
||||
}
|
||||
|
||||
impl FreeBlock {
|
||||
/// @brief: 获取FreeBlock的地址
|
||||
/// @return {*}
|
||||
fn addr(&self) -> usize {
|
||||
return self as *const _ as usize;
|
||||
}
|
||||
}
|
@ -1,135 +0,0 @@
|
||||
//! 这是暴露给C的接口,用于在C语言中使用Rust的内存分配器。
|
||||
|
||||
use core::intrinsics::unlikely;
|
||||
|
||||
use alloc::vec::Vec;
|
||||
use hashbrown::HashMap;
|
||||
|
||||
use crate::{
|
||||
arch::mm::LowAddressRemapping,
|
||||
include::bindings::bindings::{gfp_t, PAGE_U_S},
|
||||
kerror,
|
||||
libs::{align::page_align_up, spinlock::SpinLock},
|
||||
mm::MMArch,
|
||||
syscall::SystemError,
|
||||
};
|
||||
|
||||
use super::{
|
||||
allocator::page_frame::PageFrameCount, kernel_mapper::KernelMapper, no_init::pseudo_map_phys,
|
||||
page::PageFlags, MemoryManagementArch, PhysAddr, VirtAddr,
|
||||
};
|
||||
|
||||
lazy_static! {
|
||||
// 用于记录内核分配给C的空间信息
|
||||
static ref C_ALLOCATION_MAP: SpinLock<HashMap<VirtAddr, (VirtAddr, usize, usize)>> = SpinLock::new(HashMap::new());
|
||||
}
|
||||
|
||||
/// [EXTERN TO C] Use pseudo mapper to map physical memory to virtual memory.
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn rs_pseudo_map_phys(vaddr: usize, paddr: usize, size: usize) {
|
||||
let vaddr = VirtAddr::new(vaddr);
|
||||
let paddr = PhysAddr::new(paddr);
|
||||
let count = PageFrameCount::new(page_align_up(size) / MMArch::PAGE_SIZE);
|
||||
pseudo_map_phys(vaddr, paddr, count);
|
||||
}
|
||||
|
||||
/// [EXTERN TO C] Use kernel mapper to map physical memory to virtual memory.
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn rs_map_phys(vaddr: usize, paddr: usize, size: usize, flags: usize) {
|
||||
let mut vaddr = VirtAddr::new(vaddr);
|
||||
let mut paddr = PhysAddr::new(paddr);
|
||||
let count = PageFrameCount::new(page_align_up(size) / MMArch::PAGE_SIZE);
|
||||
// kdebug!("rs_map_phys: vaddr: {vaddr:?}, paddr: {paddr:?}, count: {count:?}, flags: {flags:?}");
|
||||
|
||||
let mut page_flags: PageFlags<MMArch> = PageFlags::new().set_execute(true).set_write(true);
|
||||
if flags & PAGE_U_S as usize != 0 {
|
||||
page_flags = page_flags.set_user(true);
|
||||
}
|
||||
|
||||
let mut kernel_mapper = KernelMapper::lock();
|
||||
let mut kernel_mapper = kernel_mapper.as_mut();
|
||||
assert!(kernel_mapper.is_some());
|
||||
for _i in 0..count.data() {
|
||||
let flusher = kernel_mapper
|
||||
.as_mut()
|
||||
.unwrap()
|
||||
.map_phys(vaddr, paddr, page_flags)
|
||||
.unwrap();
|
||||
|
||||
flusher.flush();
|
||||
|
||||
vaddr += MMArch::PAGE_SIZE;
|
||||
paddr += MMArch::PAGE_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn kzalloc(size: usize, _gfp: gfp_t) -> usize {
|
||||
// kdebug!("kzalloc: size: {size}");
|
||||
return do_kmalloc(size, true);
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn kmalloc(size: usize, _gfp: gfp_t) -> usize {
|
||||
// kdebug!("kmalloc: size: {size}");
|
||||
// 由于C代码不规范,因此都全部清空
|
||||
return do_kmalloc(size, true);
|
||||
}
|
||||
|
||||
fn do_kmalloc(size: usize, zero: bool) -> usize {
|
||||
let space: Vec<u8> = if zero {
|
||||
vec![0u8; size]
|
||||
} else {
|
||||
let mut v = Vec::with_capacity(size);
|
||||
unsafe {
|
||||
v.set_len(size);
|
||||
}
|
||||
v
|
||||
};
|
||||
|
||||
assert!(space.len() == size);
|
||||
let (ptr, len, cap) = space.into_raw_parts();
|
||||
if !ptr.is_null() {
|
||||
let vaddr = VirtAddr::new(ptr as usize);
|
||||
let len = len as usize;
|
||||
let cap = cap as usize;
|
||||
let mut guard = C_ALLOCATION_MAP.lock();
|
||||
if unlikely(guard.contains_key(&vaddr)) {
|
||||
drop(guard);
|
||||
unsafe {
|
||||
drop(Vec::from_raw_parts(vaddr.data() as *mut u8, len, cap));
|
||||
}
|
||||
panic!(
|
||||
"do_kmalloc: vaddr {:?} already exists in C Allocation Map, query size: {size}, zero: {zero}",
|
||||
vaddr
|
||||
);
|
||||
}
|
||||
// 插入到C Allocation Map中
|
||||
guard.insert(vaddr, (vaddr, len, cap));
|
||||
return vaddr.data();
|
||||
} else {
|
||||
return SystemError::ENOMEM.to_posix_errno() as i64 as usize;
|
||||
}
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn kfree(vaddr: usize) -> usize {
|
||||
let vaddr = VirtAddr::new(vaddr);
|
||||
let mut guard = C_ALLOCATION_MAP.lock();
|
||||
let p = guard.remove(&vaddr);
|
||||
drop(guard);
|
||||
|
||||
if p.is_none() {
|
||||
kerror!("kfree: vaddr {:?} not found in C Allocation Map", vaddr);
|
||||
return SystemError::EINVAL.to_posix_errno() as i64 as usize;
|
||||
}
|
||||
let (vaddr, len, cap) = p.unwrap();
|
||||
drop(Vec::from_raw_parts(vaddr.data() as *mut u8, len, cap));
|
||||
return 0;
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn rs_unmap_at_low_addr() -> usize {
|
||||
LowAddressRemapping::unmap_at_low_address(true);
|
||||
return 0;
|
||||
}
|
79
kernel/src/mm/internal.h
Normal file
79
kernel/src/mm/internal.h
Normal file
@ -0,0 +1,79 @@
|
||||
#pragma once
|
||||
|
||||
#include "mm.h"
|
||||
|
||||
|
||||
// 当vma被成功合并后的返回值
|
||||
#define __VMA_MERGED 1
|
||||
|
||||
/**
|
||||
* @brief 将vma结构体插入mm_struct的链表之中
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vma 待插入的VMA结构体
|
||||
* @param prev 链表的前一个结点
|
||||
*/
|
||||
void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev);
|
||||
|
||||
/**
|
||||
* @brief 将vma给定结构体从vma链表的结点之中删除
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vma 待插入的VMA结构体
|
||||
*/
|
||||
void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 获取指定虚拟地址处映射的物理地址
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vaddr 虚拟地址
|
||||
* @return uint64_t 已映射的物理地址
|
||||
*/
|
||||
uint64_t __mm_get_paddr(struct mm_struct *mm, uint64_t vaddr);
|
||||
|
||||
/**
|
||||
* @brief 创建anon_vma,并将其与页面结构体进行绑定
|
||||
* 若提供的页面结构体指针为NULL,则只创建,不绑定
|
||||
*
|
||||
* @param page 页面结构体的指针
|
||||
* @param lock_page 是否将页面结构体加锁
|
||||
* @return struct anon_vma_t* 创建好的anon_vma
|
||||
*/
|
||||
struct anon_vma_t *__anon_vma_create_alloc(struct Page *page, bool lock_page);
|
||||
|
||||
/**
|
||||
* @brief 释放anon vma结构体
|
||||
*
|
||||
* @param anon_vma 待释放的anon_vma结构体
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_free(struct anon_vma_t *anon_vma);
|
||||
|
||||
/**
|
||||
* @brief 将指定的vma加入到anon_vma的管理范围之中
|
||||
*
|
||||
* @param anon_vma 页面的anon_vma
|
||||
* @param vma 待加入的vma
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_add(struct anon_vma_t *anon_vma, struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 从anon_vma的管理范围中删除指定的vma
|
||||
* (在进入这个函数之前,应该要对anon_vma加锁)
|
||||
* @param vma 将要取消对应的anon_vma管理的vma结构体
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_del(struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 创建mmio对应的页结构体
|
||||
*
|
||||
* @param paddr 物理地址
|
||||
* @return struct Page* 创建成功的page
|
||||
*/
|
||||
struct Page* __create_mmio_page_struct(uint64_t paddr);
|
||||
|
||||
// 判断给定的两个值是否跨越了2M边界
|
||||
#define CROSS_2M_BOUND(val1, val2) ((val1 & PAGE_2M_MASK) != (val2 & PAGE_2M_MASK))
|
@ -1,145 +0,0 @@
|
||||
use super::{page::PageFlags, PageTableKind, PhysAddr, VirtAddr};
|
||||
use crate::{
|
||||
arch::{
|
||||
asm::irqflags::{local_irq_restore, local_irq_save},
|
||||
mm::{LockedFrameAllocator, PageMapper},
|
||||
},
|
||||
libs::align::page_align_up,
|
||||
mm::allocator::page_frame::PageFrameCount,
|
||||
mm::{MMArch, MemoryManagementArch},
|
||||
smp::core::smp_get_processor_id,
|
||||
syscall::SystemError,
|
||||
};
|
||||
use core::{
|
||||
ops::Deref,
|
||||
sync::atomic::{compiler_fence, AtomicUsize, Ordering},
|
||||
};
|
||||
|
||||
/// 标志当前没有处理器持有内核映射器的锁
|
||||
/// 之所以需要这个标志,是因为AtomicUsize::new(0)会把0当作一个处理器的id
|
||||
const KERNEL_MAPPER_NO_PROCESSOR: usize = !0;
|
||||
/// 当前持有内核映射器锁的处理器
|
||||
static KERNEL_MAPPER_LOCK_OWNER: AtomicUsize = AtomicUsize::new(KERNEL_MAPPER_NO_PROCESSOR);
|
||||
/// 内核映射器的锁计数器
|
||||
static KERNEL_MAPPER_LOCK_COUNT: AtomicUsize = AtomicUsize::new(0);
|
||||
|
||||
pub struct KernelMapper {
|
||||
/// 内核空间映射器
|
||||
mapper: PageMapper,
|
||||
/// 标记当前映射器是否为只读
|
||||
readonly: bool,
|
||||
}
|
||||
|
||||
impl KernelMapper {
|
||||
fn lock_cpu(cpuid: usize, mapper: PageMapper) -> Self {
|
||||
loop {
|
||||
match KERNEL_MAPPER_LOCK_OWNER.compare_exchange_weak(
|
||||
KERNEL_MAPPER_NO_PROCESSOR,
|
||||
cpuid,
|
||||
Ordering::Acquire,
|
||||
Ordering::Relaxed,
|
||||
) {
|
||||
Ok(_) => break,
|
||||
// 当前处理器已经持有了锁
|
||||
Err(id) if id == cpuid => break,
|
||||
// either CAS failed, or some other hardware thread holds the lock
|
||||
Err(_) => core::hint::spin_loop(),
|
||||
}
|
||||
}
|
||||
|
||||
let prev_count = KERNEL_MAPPER_LOCK_COUNT.fetch_add(1, Ordering::Relaxed);
|
||||
compiler_fence(Ordering::Acquire);
|
||||
|
||||
// 本地核心已经持有过锁,因此标记当前加锁获得的映射器为只读
|
||||
let readonly = prev_count > 0;
|
||||
|
||||
return Self { mapper, readonly };
|
||||
}
|
||||
|
||||
/// @brief 锁定内核映射器, 并返回一个内核映射器对象
|
||||
#[inline(always)]
|
||||
pub fn lock() -> Self {
|
||||
let cpuid = smp_get_processor_id() as usize;
|
||||
let mapper = unsafe { PageMapper::current(PageTableKind::Kernel, LockedFrameAllocator) };
|
||||
return Self::lock_cpu(cpuid, mapper);
|
||||
}
|
||||
|
||||
/// @brief 获取内核映射器的page mapper的可变引用。如果当前映射器为只读,则返回 None
|
||||
#[inline(always)]
|
||||
pub fn as_mut(&mut self) -> Option<&mut PageMapper> {
|
||||
if self.readonly {
|
||||
return None;
|
||||
} else {
|
||||
return Some(&mut self.mapper);
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 获取内核映射器的page mapper的不可变引用
|
||||
#[inline(always)]
|
||||
pub fn as_ref(&self) -> &PageMapper {
|
||||
return &self.mapper;
|
||||
}
|
||||
|
||||
/// 映射一段物理地址到指定的虚拟地址。
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `vaddr`: 要映射的虚拟地址
|
||||
/// - `paddr`: 要映射的物理地址
|
||||
/// - `size`: 要映射的大小(字节,必须是页大小的整数倍,否则会向上取整)
|
||||
/// - `flags`: 页面标志
|
||||
/// - `flush`: 是否刷新TLB
|
||||
///
|
||||
/// ## 返回
|
||||
///
|
||||
/// - 成功:返回Ok(())
|
||||
/// - 失败: 如果当前映射器为只读,则返回EAGAIN_OR_EWOULDBLOCK
|
||||
pub unsafe fn map_phys_with_size(
|
||||
&mut self,
|
||||
mut vaddr: VirtAddr,
|
||||
mut paddr: PhysAddr,
|
||||
size: usize,
|
||||
flags: PageFlags<MMArch>,
|
||||
flush: bool,
|
||||
) -> Result<(), SystemError> {
|
||||
if self.readonly {
|
||||
return Err(SystemError::EAGAIN_OR_EWOULDBLOCK);
|
||||
}
|
||||
|
||||
let count = PageFrameCount::new(page_align_up(size) / MMArch::PAGE_SIZE);
|
||||
// kdebug!("kernel mapper: map_phys: vaddr: {vaddr:?}, paddr: {paddr:?}, count: {count:?}, flags: {flags:?}");
|
||||
|
||||
for _ in 0..count.data() {
|
||||
let flusher = self.mapper.map_phys(vaddr, paddr, flags).unwrap();
|
||||
|
||||
if flush {
|
||||
flusher.flush();
|
||||
}
|
||||
|
||||
vaddr += MMArch::PAGE_SIZE;
|
||||
paddr += MMArch::PAGE_SIZE;
|
||||
}
|
||||
return Ok(());
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for KernelMapper {
|
||||
fn drop(&mut self) {
|
||||
// 为了防止fetch_sub和store之间,由于中断,导致store错误清除了owner,导致错误,因此需要关中断。
|
||||
let flags = local_irq_save();
|
||||
let prev_count = KERNEL_MAPPER_LOCK_COUNT.fetch_sub(1, Ordering::Relaxed);
|
||||
if prev_count == 1 {
|
||||
KERNEL_MAPPER_LOCK_OWNER.store(KERNEL_MAPPER_NO_PROCESSOR, Ordering::Release);
|
||||
}
|
||||
local_irq_restore(flags);
|
||||
compiler_fence(Ordering::Release);
|
||||
}
|
||||
}
|
||||
|
||||
impl Deref for KernelMapper {
|
||||
type Target = PageMapper;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
return self.as_ref();
|
||||
}
|
||||
}
|
196
kernel/src/mm/mm-stat.c
Normal file
196
kernel/src/mm/mm-stat.c
Normal file
@ -0,0 +1,196 @@
|
||||
/**
|
||||
* @file mm-stat.c
|
||||
* @author longjin(longjin@RinGoTek.cn)
|
||||
* @brief 查询内存信息
|
||||
* @version 0.1
|
||||
* @date 2022-08-06
|
||||
*
|
||||
* @copyright Copyright (c) 2022
|
||||
*
|
||||
*/
|
||||
|
||||
#include "mm.h"
|
||||
#include "slab.h"
|
||||
#include <common/errno.h>
|
||||
#include <process/ptrace.h>
|
||||
|
||||
extern const struct slab kmalloc_cache_group[16];
|
||||
|
||||
static int __empty_2m_pages(int zone);
|
||||
static int __count_in_using_2m_pages(int zone);
|
||||
static uint64_t __count_kmalloc_free();
|
||||
static uint64_t __count_kmalloc_using();
|
||||
static uint64_t __count_kmalloc_total();
|
||||
uint64_t sys_mm_stat(struct pt_regs *regs);
|
||||
|
||||
/**
|
||||
* @brief 获取指定zone中的空闲2M页的数量
|
||||
*
|
||||
* @param zone 内存zone号
|
||||
* @return int 空闲2M页数量
|
||||
*/
|
||||
static int __count_empty_2m_pages(int zone)
|
||||
{
|
||||
int zone_start = 0, zone_end = 0;
|
||||
|
||||
uint64_t attr = 0;
|
||||
switch (zone)
|
||||
{
|
||||
case ZONE_DMA:
|
||||
// DMA区域
|
||||
zone_start = 0;
|
||||
zone_end = ZONE_DMA_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_NORMAL:
|
||||
zone_start = ZONE_DMA_INDEX;
|
||||
zone_end = ZONE_NORMAL_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_UNMAPPED_IN_PGT:
|
||||
zone_start = ZONE_NORMAL_INDEX;
|
||||
zone_end = ZONE_UNMAPPED_INDEX;
|
||||
attr = 0;
|
||||
break;
|
||||
default:
|
||||
kerror("In __count_empty_2m_pages: param: zone invalid.");
|
||||
// 返回错误码
|
||||
return -EINVAL;
|
||||
break;
|
||||
}
|
||||
|
||||
uint64_t result = 0;
|
||||
for (int i = zone_start; i <= zone_end; ++i)
|
||||
{
|
||||
result += (memory_management_struct.zones_struct + i)->count_pages_free;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 获取指定zone中的正在使用的2M页的数量
|
||||
*
|
||||
* @param zone 内存zone号
|
||||
* @return int 空闲2M页数量
|
||||
*/
|
||||
static int __count_in_using_2m_pages(int zone)
|
||||
{
|
||||
int zone_start = 0, zone_end = 0;
|
||||
|
||||
uint64_t attr = 0;
|
||||
switch (zone)
|
||||
{
|
||||
case ZONE_DMA:
|
||||
// DMA区域
|
||||
zone_start = 0;
|
||||
zone_end = ZONE_DMA_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_NORMAL:
|
||||
zone_start = ZONE_DMA_INDEX;
|
||||
zone_end = ZONE_NORMAL_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_UNMAPPED_IN_PGT:
|
||||
zone_start = ZONE_NORMAL_INDEX;
|
||||
zone_end = ZONE_UNMAPPED_INDEX;
|
||||
attr = 0;
|
||||
break;
|
||||
default:
|
||||
kerror("In __count_in_using_2m_pages: param: zone invalid.");
|
||||
// 返回错误码
|
||||
return -EINVAL;
|
||||
break;
|
||||
}
|
||||
|
||||
uint64_t result = 0;
|
||||
for (int i = zone_start; i <= zone_end; ++i)
|
||||
{
|
||||
result += (memory_management_struct.zones_struct + i)->count_pages_using;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 计算kmalloc缓冲区中的空闲内存
|
||||
*
|
||||
* @return uint64_t 空闲内存(字节)
|
||||
*/
|
||||
static uint64_t __count_kmalloc_free()
|
||||
{
|
||||
uint64_t result = 0;
|
||||
for (int i = 0; i < sizeof(kmalloc_cache_group) / sizeof(struct slab); ++i)
|
||||
{
|
||||
result += kmalloc_cache_group[i].size * kmalloc_cache_group[i].count_total_free;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 计算kmalloc缓冲区中已使用的内存
|
||||
*
|
||||
* @return uint64_t 已使用的内存(字节)
|
||||
*/
|
||||
static uint64_t __count_kmalloc_using()
|
||||
{
|
||||
uint64_t result = 0;
|
||||
for (int i = 0; i < sizeof(kmalloc_cache_group) / sizeof(struct slab); ++i)
|
||||
{
|
||||
result += kmalloc_cache_group[i].size * kmalloc_cache_group[i].count_total_using;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 计算kmalloc缓冲区中总共占用的内存
|
||||
*
|
||||
* @return uint64_t 缓冲区占用的内存(字节)
|
||||
*/
|
||||
static uint64_t __count_kmalloc_total()
|
||||
{
|
||||
uint64_t result = 0;
|
||||
for (int i = 0; i < sizeof(kmalloc_cache_group) / sizeof(struct slab); ++i)
|
||||
{
|
||||
result += kmalloc_cache_group[i].size *
|
||||
(kmalloc_cache_group[i].count_total_free + kmalloc_cache_group[i].count_total_using);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 获取系统当前的内存信息(未上锁,不一定精准)
|
||||
*
|
||||
* @return struct mm_stat_t 内存信息结构体
|
||||
*/
|
||||
struct mm_stat_t mm_stat()
|
||||
{
|
||||
struct mm_stat_t tmp = {0};
|
||||
// 统计物理页的信息
|
||||
tmp.used = __count_in_using_2m_pages(ZONE_NORMAL) * PAGE_2M_SIZE;
|
||||
tmp.free = __count_empty_2m_pages(ZONE_NORMAL) * PAGE_2M_SIZE;
|
||||
tmp.total = tmp.used + tmp.free;
|
||||
tmp.shared = 0;
|
||||
// 统计kmalloc slab中的信息
|
||||
tmp.cache_free = __count_kmalloc_free();
|
||||
tmp.cache_used = __count_kmalloc_using();
|
||||
tmp.available = tmp.free + tmp.cache_free;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 获取内存信息的系统调用
|
||||
*
|
||||
* @param r8 返回的内存信息结构体的地址
|
||||
* @return uint64_t
|
||||
*/
|
||||
uint64_t sys_do_mstat(struct mm_stat_t *dst, bool from_user)
|
||||
{
|
||||
if (dst == NULL)
|
||||
return -EFAULT;
|
||||
struct mm_stat_t stat = mm_stat();
|
||||
if (from_user)
|
||||
copy_to_user((void *)dst, &stat, sizeof(struct mm_stat_t));
|
||||
else
|
||||
memcpy((void *)dst, &stat, sizeof(struct mm_stat_t));
|
||||
return 0;
|
||||
}
|
@ -4,4 +4,179 @@
|
||||
#include <common/spinlock.h>
|
||||
#include <common/atomic.h>
|
||||
|
||||
struct mm_struct;
|
||||
struct anon_vma_t;
|
||||
typedef uint64_t vm_flags_t;
|
||||
|
||||
/**
|
||||
* @brief 内存页表结构体
|
||||
*
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
unsigned long pml4t;
|
||||
} pml4t_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
unsigned long pdpt;
|
||||
} pdpt_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
unsigned long pdt;
|
||||
} pdt_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
unsigned long pt;
|
||||
} pt_t;
|
||||
|
||||
// Address Range Descriptor Structure 地址范围描述符
|
||||
struct ARDS
|
||||
{
|
||||
ul BaseAddr; // 基地址
|
||||
ul Length; // 内存长度 以字节为单位
|
||||
unsigned int type; // 本段内存的类型
|
||||
// type=1 表示可以被操作系统使用
|
||||
// type=2 ARR - 内存使用中或被保留,操作系统不能使用
|
||||
// 其他 未定义,操作系统需要将其视为ARR
|
||||
} __attribute__((packed)); // 修饰该结构体不会生成对齐空间,改用紧凑格式
|
||||
|
||||
struct memory_desc
|
||||
{
|
||||
|
||||
struct ARDS e820[32]; // 物理内存段结构数组
|
||||
ul len_e820; // 物理内存段长度
|
||||
|
||||
ul *bmp; // 物理空间页映射位图
|
||||
ul bmp_len; // bmp的长度
|
||||
ul bits_size; // 物理地址空间页数量
|
||||
|
||||
struct Page *pages_struct;
|
||||
ul count_pages; // struct page结构体的总数
|
||||
ul pages_struct_len; // pages_struct链表的长度
|
||||
|
||||
struct Zone *zones_struct;
|
||||
ul count_zones; // zone结构体的数量
|
||||
ul zones_struct_len; // zones_struct列表的长度
|
||||
|
||||
ul kernel_code_start, kernel_code_end; // 内核程序代码段起始地址、结束地址
|
||||
ul kernel_data_end, rodata_end; // 内核程序数据段结束地址、 内核程序只读段结束地址
|
||||
uint64_t start_brk; // 堆地址的起始位置
|
||||
|
||||
ul end_of_struct; // 内存页管理结构的结束地址
|
||||
};
|
||||
|
||||
struct Zone
|
||||
{
|
||||
// 指向内存页的指针
|
||||
struct Page *pages_group;
|
||||
ul count_pages; // 本区域的struct page结构体总数
|
||||
|
||||
// 本内存区域的起始、结束的页对齐地址
|
||||
ul zone_addr_start;
|
||||
ul zone_addr_end;
|
||||
ul zone_length; // 区域长度
|
||||
|
||||
// 本区域空间的属性
|
||||
ul attr;
|
||||
|
||||
struct memory_desc *gmd_struct;
|
||||
|
||||
// 本区域正在使用中和空闲中的物理页面数量
|
||||
ul count_pages_using;
|
||||
ul count_pages_free;
|
||||
|
||||
// 物理页被引用次数
|
||||
ul total_pages_link;
|
||||
};
|
||||
|
||||
struct Page
|
||||
{
|
||||
// 本页所属的内存域结构体
|
||||
struct Zone *zone;
|
||||
// 本页对应的物理地址
|
||||
ul addr_phys;
|
||||
// 页面属性
|
||||
ul attr;
|
||||
// 页面被引用的次数
|
||||
ul ref_counts;
|
||||
// 本页的创建时间
|
||||
ul age;
|
||||
|
||||
struct anon_vma_t *anon_vma; // 本页对应的anon_vma
|
||||
|
||||
spinlock_t op_lock; // 页面操作锁
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 虚拟内存区域(VMA)结构体
|
||||
*
|
||||
*/
|
||||
struct vm_area_struct
|
||||
{
|
||||
struct vm_area_struct *vm_prev, *vm_next;
|
||||
|
||||
// 虚拟内存区域的范围是一个左闭右开的区间:[vm_start, vm_end)
|
||||
uint64_t vm_start; // 区域的起始地址
|
||||
uint64_t vm_end; // 区域的结束地址
|
||||
struct mm_struct *vm_mm; // 虚拟内存区域对应的mm结构体
|
||||
vm_flags_t vm_flags; // 虚拟内存区域的标志位, 具体可选值请见mm.h
|
||||
|
||||
|
||||
struct List anon_vma_list; // anon_vma的链表结点
|
||||
struct anon_vma_t * anon_vma; // 属于的anon_vma
|
||||
|
||||
struct vm_operations_t *vm_ops; // 操作方法
|
||||
atomic_t ref_count; // 引用计数
|
||||
pgoff_t page_offset; // 起始地址在当前VMA所占的2M物理页中的偏移量
|
||||
void *private_data;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 内存空间分布结构体
|
||||
* 包含了进程内存空间分布的信息
|
||||
*/
|
||||
struct mm_struct
|
||||
{
|
||||
pml4t_t *pgd; // 内存页表指针
|
||||
struct vm_area_struct *vmas; // VMA列表
|
||||
// 代码段空间
|
||||
uint64_t code_addr_start, code_addr_end;
|
||||
// 数据段空间
|
||||
uint64_t data_addr_start, data_addr_end;
|
||||
// 只读数据段空间
|
||||
uint64_t rodata_addr_start, rodata_addr_end;
|
||||
// BSS段的空间
|
||||
uint64_t bss_start, bss_end;
|
||||
// 动态内存分配区(堆区域)
|
||||
uint64_t brk_start, brk_end;
|
||||
// 应用层栈基地址
|
||||
uint64_t stack_start;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 匿名vma对象的结构体
|
||||
*
|
||||
* anon_vma与每个内存页结构体进行一对一绑定
|
||||
* anon_vma也连接着一切使用到该内存页的vma,当发生页面换出时,应当更新与该page相关的所有vma在页表中的映射信息。
|
||||
*/
|
||||
struct anon_vma_t
|
||||
{
|
||||
// anon vma的操作信号量
|
||||
semaphore_t sem;
|
||||
|
||||
/**
|
||||
* 记录当前有多少个vma与该anon_vma关联,当vma被释放时,
|
||||
* 应当检查这个值。当该值为0时,应当释放anon_vma结构体
|
||||
*/
|
||||
atomic_t ref_count;
|
||||
|
||||
// todo: 把下面的循环链表更换成红黑树
|
||||
// 与当前anon_vma相关的vma的列表
|
||||
struct List vma_list;
|
||||
// 当前anon vma对应的page
|
||||
struct Page* page;
|
||||
};
|
686
kernel/src/mm/mm.c
Normal file
686
kernel/src/mm/mm.c
Normal file
@ -0,0 +1,686 @@
|
||||
#include "mm.h"
|
||||
#include "mm-types.h"
|
||||
#include "mmio.h"
|
||||
#include "slab.h"
|
||||
#include <common/printk.h>
|
||||
#include <common/kprint.h>
|
||||
#include <driver/multiboot2/multiboot2.h>
|
||||
#include <process/process.h>
|
||||
#include <common/compiler.h>
|
||||
#include <common/errno.h>
|
||||
#include <debug/traceback/traceback.h>
|
||||
|
||||
uint64_t mm_Total_Memory = 0;
|
||||
uint64_t mm_total_2M_pages = 0;
|
||||
struct mm_struct initial_mm = {0};
|
||||
|
||||
struct memory_desc memory_management_struct = {{0}, 0};
|
||||
|
||||
/**
|
||||
* @brief 从页表中获取pdt页表项的内容
|
||||
*
|
||||
* @param proc_page_table_addr 页表的地址
|
||||
* @param is_phys 页表地址是否为物理地址
|
||||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||||
* @param length 要清除的区域的长度
|
||||
* @param clear 是否清除标志位
|
||||
*/
|
||||
uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
|
||||
|
||||
/**
|
||||
* @brief 检查页表是否存在不为0的页表项
|
||||
*
|
||||
* @param ptr 页表基指针
|
||||
* @return int8_t 存在 -> 1
|
||||
* 不存在 -> 0
|
||||
*/
|
||||
int8_t mm_check_page_table(uint64_t *ptr)
|
||||
{
|
||||
for (int i = 0; i < 512; ++i, ++ptr)
|
||||
{
|
||||
if (*ptr != 0)
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void mm_init()
|
||||
{
|
||||
kinfo("Initializing memory management unit...");
|
||||
// 设置内核程序不同部分的起止地址
|
||||
memory_management_struct.kernel_code_start = (ul)&_text;
|
||||
memory_management_struct.kernel_code_end = (ul)&_etext;
|
||||
memory_management_struct.kernel_data_end = (ul)&_edata;
|
||||
memory_management_struct.rodata_end = (ul)&_erodata;
|
||||
memory_management_struct.start_brk = (ul)&_end;
|
||||
|
||||
struct multiboot_mmap_entry_t mb2_mem_info[512];
|
||||
int count;
|
||||
|
||||
multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
|
||||
io_mfence();
|
||||
for (int i = 0; i < count; ++i)
|
||||
{
|
||||
io_mfence();
|
||||
// 可用的内存
|
||||
if (mb2_mem_info->type == 1)
|
||||
mm_Total_Memory += mb2_mem_info->len;
|
||||
|
||||
// kdebug("[i=%d] mb2_mem_info[i].type=%d, mb2_mem_info[i].addr=%#018lx", i, mb2_mem_info[i].type, mb2_mem_info[i].addr);
|
||||
// 保存信息到mms
|
||||
memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
|
||||
memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
|
||||
memory_management_struct.e820[i].type = mb2_mem_info[i].type;
|
||||
memory_management_struct.len_e820 = i;
|
||||
|
||||
// 脏数据
|
||||
if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
|
||||
break;
|
||||
}
|
||||
printk("[ INFO ] Total amounts of RAM : %ld bytes\n", mm_Total_Memory);
|
||||
|
||||
// 计算有效内存页数
|
||||
io_mfence();
|
||||
for (int i = 0; i < memory_management_struct.len_e820; ++i)
|
||||
{
|
||||
if (memory_management_struct.e820[i].type != 1)
|
||||
continue;
|
||||
io_mfence();
|
||||
// 将内存段的起始物理地址按照2M进行对齐
|
||||
ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
|
||||
// 将内存段的终止物理地址的低2M区域清空,以实现对齐
|
||||
ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
|
||||
|
||||
// 内存段不可用
|
||||
if (addr_end <= addr_start)
|
||||
continue;
|
||||
io_mfence();
|
||||
mm_total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
|
||||
}
|
||||
kinfo("Total amounts of 2M pages : %ld.", mm_total_2M_pages);
|
||||
|
||||
// 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
|
||||
ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
|
||||
// 初始化mms的bitmap
|
||||
// bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
|
||||
io_mfence();
|
||||
memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||||
memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
|
||||
memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
|
||||
io_mfence();
|
||||
|
||||
// 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
|
||||
memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
|
||||
io_mfence();
|
||||
// 初始化内存页结构
|
||||
// 将页结构映射于bmp之后
|
||||
memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||||
|
||||
memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
|
||||
memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
|
||||
// 将pages_struct全部清空,以备后续初始化
|
||||
memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
|
||||
|
||||
io_mfence();
|
||||
// 初始化内存区域
|
||||
memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||||
io_mfence();
|
||||
// 由于暂时无法计算zone结构体的数量,因此先将其设为0
|
||||
memory_management_struct.count_zones = 0;
|
||||
io_mfence();
|
||||
// zones-struct 成员变量暂时按照5个来计算
|
||||
memory_management_struct.zones_struct_len = (10 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
|
||||
io_mfence();
|
||||
memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
|
||||
|
||||
// ==== 遍历e820数组,完成成员变量初始化工作 ===
|
||||
|
||||
for (int i = 0; i < memory_management_struct.len_e820; ++i)
|
||||
{
|
||||
io_mfence();
|
||||
if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
|
||||
continue;
|
||||
ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
|
||||
ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
|
||||
|
||||
if (addr_end <= addr_start)
|
||||
continue;
|
||||
|
||||
// zone init
|
||||
struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
|
||||
++memory_management_struct.count_zones;
|
||||
|
||||
z->zone_addr_start = addr_start;
|
||||
z->zone_addr_end = addr_end;
|
||||
z->zone_length = addr_end - addr_start;
|
||||
|
||||
z->count_pages_using = 0;
|
||||
z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
|
||||
z->total_pages_link = 0;
|
||||
|
||||
z->attr = 0;
|
||||
z->gmd_struct = &memory_management_struct;
|
||||
|
||||
z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
|
||||
z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
|
||||
|
||||
// 初始化页
|
||||
struct Page *p = z->pages_group;
|
||||
|
||||
for (int j = 0; j < z->count_pages; ++j, ++p)
|
||||
{
|
||||
p->zone = z;
|
||||
p->addr_phys = addr_start + PAGE_2M_SIZE * j;
|
||||
p->attr = 0;
|
||||
|
||||
p->ref_counts = 0;
|
||||
p->age = 0;
|
||||
|
||||
// 将bmp中对应的位 复位
|
||||
*(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
|
||||
}
|
||||
}
|
||||
|
||||
// 初始化0~2MB的物理页
|
||||
// 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
|
||||
io_mfence();
|
||||
memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
|
||||
memory_management_struct.pages_struct->addr_phys = 0UL;
|
||||
set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
|
||||
memory_management_struct.pages_struct->ref_counts = 1;
|
||||
memory_management_struct.pages_struct->age = 0;
|
||||
// 将第0页的标志位给置上
|
||||
//*(memory_management_struct.bmp) |= 1UL;
|
||||
|
||||
// 计算zone结构体的总长度(按照64位对齐)
|
||||
memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
|
||||
|
||||
ZONE_DMA_INDEX = 0;
|
||||
ZONE_NORMAL_INDEX = memory_management_struct.count_zones ;
|
||||
ZONE_UNMAPPED_INDEX = 0;
|
||||
|
||||
//kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
|
||||
// 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
|
||||
memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
|
||||
|
||||
// 初始化内存管理单元结构所占的物理页的结构体
|
||||
ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
|
||||
// kdebug("mms_max_page=%ld", mms_max_page);
|
||||
|
||||
struct Page *tmp_page = NULL;
|
||||
ul page_num;
|
||||
// 第0个page已经在上方配置
|
||||
for (ul j = 1; j <= mms_max_page; ++j)
|
||||
{
|
||||
barrier();
|
||||
tmp_page = memory_management_struct.pages_struct + j;
|
||||
page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
|
||||
barrier();
|
||||
page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
|
||||
*(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
|
||||
++tmp_page->zone->count_pages_using;
|
||||
--tmp_page->zone->count_pages_free;
|
||||
}
|
||||
|
||||
kinfo("Memory management unit initialize complete!");
|
||||
|
||||
flush_tlb();
|
||||
// todo: 在这里增加代码,暂时停止视频输出,否则可能会导致图像数据写入slab的区域,从而造成异常
|
||||
// 初始化slab内存池
|
||||
slab_init();
|
||||
page_table_init();
|
||||
|
||||
initial_mm.pgd = (pml4t_t *)get_CR3();
|
||||
|
||||
initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
|
||||
initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
|
||||
|
||||
initial_mm.data_addr_start = (ul)&_data;
|
||||
initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
|
||||
|
||||
initial_mm.rodata_addr_start = (ul)&_rodata;
|
||||
initial_mm.rodata_addr_end = (ul)&_erodata;
|
||||
initial_mm.bss_start = (uint64_t)&_bss;
|
||||
initial_mm.bss_end = (uint64_t)&_ebss;
|
||||
|
||||
initial_mm.brk_start = memory_management_struct.start_brk;
|
||||
initial_mm.brk_end = current_pcb->addr_limit;
|
||||
|
||||
initial_mm.stack_start = _stack_start;
|
||||
initial_mm.vmas = NULL;
|
||||
|
||||
|
||||
|
||||
mmio_init();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 初始化内存页
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @param flags 标志位
|
||||
* 本函数只负责初始化内存页,允许对同一页面进行多次初始化
|
||||
* 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long page_init(struct Page *page, ul flags)
|
||||
{
|
||||
page->attr |= flags;
|
||||
// 若页面的引用计数为0或是共享页,增加引用计数
|
||||
if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
|
||||
{
|
||||
++page->ref_counts;
|
||||
barrier();
|
||||
if (page->zone)
|
||||
++page->zone->total_pages_link;
|
||||
}
|
||||
page->anon_vma = NULL;
|
||||
spin_init(&(page->op_lock));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
|
||||
*
|
||||
* @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
|
||||
* @param num 需要申请的连续内存页的数量 num<64
|
||||
* @param flags 将页面属性设置成flag
|
||||
* @return struct Page*
|
||||
*/
|
||||
struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
|
||||
{
|
||||
ul zone_start = 0, zone_end = 0;
|
||||
if (num >= 64 && num <= 0)
|
||||
{
|
||||
kerror("alloc_pages(): num is invalid.");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ul attr = flags;
|
||||
switch (zone_select)
|
||||
{
|
||||
case ZONE_DMA:
|
||||
// DMA区域
|
||||
zone_start = 0;
|
||||
zone_end = ZONE_DMA_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_NORMAL:
|
||||
zone_start = ZONE_DMA_INDEX;
|
||||
zone_end = ZONE_NORMAL_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_UNMAPPED_IN_PGT:
|
||||
zone_start = ZONE_NORMAL_INDEX;
|
||||
zone_end = ZONE_UNMAPPED_INDEX;
|
||||
attr = 0;
|
||||
break;
|
||||
|
||||
default:
|
||||
kerror("In alloc_pages: param: zone_select incorrect.");
|
||||
// 返回空
|
||||
return NULL;
|
||||
break;
|
||||
}
|
||||
|
||||
for (int i = zone_start; i < zone_end; ++i)
|
||||
{
|
||||
if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
|
||||
continue;
|
||||
|
||||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||||
// 区域对应的起止页号
|
||||
ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
|
||||
ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
|
||||
|
||||
ul tmp = 64 - page_start % 64;
|
||||
for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
|
||||
{
|
||||
// 按照bmp中的每一个元素进行查找
|
||||
// 先将p定位到bmp的起始元素
|
||||
ul *p = memory_management_struct.bmp + (j >> 6);
|
||||
|
||||
ul shift = j % 64;
|
||||
ul tmp_num = ((1UL << num) - 1);
|
||||
for (ul k = shift; k < 64; ++k)
|
||||
{
|
||||
// 寻找连续num个空页
|
||||
if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
|
||||
|
||||
{
|
||||
ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
|
||||
for (ul l = 0; l < num; ++l)
|
||||
{
|
||||
struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
|
||||
|
||||
// 分配页面,手动配置属性及计数器
|
||||
// 置位bmp
|
||||
*(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
|
||||
++(z->count_pages_using);
|
||||
--(z->count_pages_free);
|
||||
page_init(x, attr);
|
||||
}
|
||||
// 成功分配了页面,返回第一个页面的指针
|
||||
// kwarn("start page num=%d\n", start_page_num);
|
||||
return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
kBUG("Cannot alloc page, ZONE=%d\tnums=%d, mm_total_2M_pages=%d", zone_select, num, mm_total_2M_pages);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
|
||||
*
|
||||
* @param p 物理页结构体
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long page_clean(struct Page *p)
|
||||
{
|
||||
--p->ref_counts;
|
||||
--p->zone->total_pages_link;
|
||||
|
||||
// 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
|
||||
if (!p->ref_counts)
|
||||
{
|
||||
p->attr &= PAGE_PGT_MAPPED;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the page's attr
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @return ul 属性
|
||||
*/
|
||||
ul get_page_attr(struct Page *page)
|
||||
{
|
||||
if (page == NULL)
|
||||
{
|
||||
kBUG("get_page_attr(): page == NULL");
|
||||
return EPAGE_NULL;
|
||||
}
|
||||
else
|
||||
return page->attr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the page's attr
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @param flags 属性
|
||||
* @return ul 错误码
|
||||
*/
|
||||
ul set_page_attr(struct Page *page, ul flags)
|
||||
{
|
||||
if (page == NULL)
|
||||
{
|
||||
kBUG("get_page_attr(): page == NULL");
|
||||
return EPAGE_NULL;
|
||||
}
|
||||
else
|
||||
{
|
||||
page->attr = flags;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @brief 释放连续number个内存页
|
||||
*
|
||||
* @param page 第一个要被释放的页面的结构体
|
||||
* @param number 要释放的内存页数量 number<64
|
||||
*/
|
||||
|
||||
void free_pages(struct Page *page, int number)
|
||||
{
|
||||
if (page == NULL)
|
||||
{
|
||||
kerror("free_pages() page is invalid.");
|
||||
return;
|
||||
}
|
||||
|
||||
if (number >= 64 || number <= 0)
|
||||
{
|
||||
kerror("free_pages(): number %d is invalid.", number);
|
||||
return;
|
||||
}
|
||||
|
||||
ul page_num;
|
||||
for (int i = 0; i < number; ++i, ++page)
|
||||
{
|
||||
page_num = page->addr_phys >> PAGE_2M_SHIFT;
|
||||
// 复位bmp
|
||||
*(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
|
||||
// 更新计数器
|
||||
--page->zone->count_pages_using;
|
||||
++page->zone->count_pages_free;
|
||||
page->attr = 0;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 重新初始化页表的函数
|
||||
* 将所有物理页映射到线性地址空间
|
||||
*/
|
||||
void page_table_init()
|
||||
{
|
||||
kinfo("Re-Initializing page table...");
|
||||
ul *global_CR3 = get_CR3();
|
||||
|
||||
int js = 0;
|
||||
ul *tmp_addr;
|
||||
for (int i = 0; i < memory_management_struct.count_zones; ++i)
|
||||
{
|
||||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||||
struct Page *p = z->pages_group;
|
||||
|
||||
if (i == ZONE_UNMAPPED_INDEX && ZONE_UNMAPPED_INDEX != 0)
|
||||
break;
|
||||
|
||||
for (int j = 0; j < z->count_pages; ++j)
|
||||
{
|
||||
mm_map_proc_page_table((uint64_t)get_CR3(), true, (ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE, false, true, false);
|
||||
|
||||
++p;
|
||||
++js;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
barrier();
|
||||
// ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
|
||||
|
||||
// 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
|
||||
// 因此需要先在IDLE进程的顶层页表内映射二级页表
|
||||
|
||||
uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
|
||||
|
||||
for (int i = 256; i < 512; ++i)
|
||||
{
|
||||
uint64_t *tmp = idle_pml4t_vaddr + i;
|
||||
barrier();
|
||||
if (*tmp == 0)
|
||||
{
|
||||
void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
|
||||
barrier();
|
||||
memset(pdpt, 0, PAGE_4K_SIZE);
|
||||
barrier();
|
||||
set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
flush_tlb();
|
||||
kinfo("Page table Initialized. Affects:%d", js);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从页表中获取pdt页表项的内容
|
||||
*
|
||||
* @param proc_page_table_addr 页表的地址
|
||||
* @param is_phys 页表地址是否为物理地址
|
||||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||||
* @param length 要清除的区域的长度
|
||||
* @param clear 是否清除标志位
|
||||
*/
|
||||
uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
|
||||
{
|
||||
ul *tmp;
|
||||
if (is_phys)
|
||||
tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
|
||||
else
|
||||
tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
|
||||
|
||||
// pml4页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
|
||||
|
||||
// pdpt页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
// 读取pdt页表项
|
||||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
|
||||
|
||||
if (clear) // 清除页表项的标志位
|
||||
return *tmp & (~0x1fff);
|
||||
else
|
||||
return *tmp;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从mms中寻找Page结构体
|
||||
*
|
||||
* @param phys_addr
|
||||
* @return struct Page*
|
||||
*/
|
||||
static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
|
||||
{
|
||||
uint32_t zone_start, zone_end;
|
||||
switch (zone_select)
|
||||
{
|
||||
case ZONE_DMA:
|
||||
// DMA区域
|
||||
zone_start = 0;
|
||||
zone_end = ZONE_DMA_INDEX;
|
||||
break;
|
||||
case ZONE_NORMAL:
|
||||
zone_start = ZONE_DMA_INDEX;
|
||||
zone_end = ZONE_NORMAL_INDEX;
|
||||
break;
|
||||
case ZONE_UNMAPPED_IN_PGT:
|
||||
zone_start = ZONE_NORMAL_INDEX;
|
||||
zone_end = ZONE_UNMAPPED_INDEX;
|
||||
break;
|
||||
|
||||
default:
|
||||
kerror("In mm_find_page: param: zone_select incorrect.");
|
||||
// 返回空
|
||||
return NULL;
|
||||
break;
|
||||
}
|
||||
|
||||
for (int i = zone_start; i <= zone_end; ++i)
|
||||
{
|
||||
if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
|
||||
continue;
|
||||
|
||||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||||
|
||||
// 区域对应的起止页号
|
||||
ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
|
||||
ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
|
||||
|
||||
ul tmp = 64 - page_start % 64;
|
||||
for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
|
||||
{
|
||||
// 按照bmp中的每一个元素进行查找
|
||||
// 先将p定位到bmp的起始元素
|
||||
ul *p = memory_management_struct.bmp + (j >> 6);
|
||||
|
||||
ul shift = j % 64;
|
||||
for (ul k = shift; k < 64; ++k)
|
||||
{
|
||||
if ((*p >> k) & 1) // 若当前页已分配
|
||||
{
|
||||
uint64_t page_num = j + k - shift;
|
||||
struct Page *x = memory_management_struct.pages_struct + page_num;
|
||||
|
||||
if (x->addr_phys == phys_addr) // 找到对应的页
|
||||
return x;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 调整堆区域的大小(暂时只能增加堆区域)
|
||||
*
|
||||
* @todo 缩小堆区域
|
||||
* @param old_brk_end_addr 原本的堆内存区域的结束地址
|
||||
* @param offset 新的地址相对于原地址的偏移量
|
||||
* @return uint64_t
|
||||
*/
|
||||
uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
|
||||
{
|
||||
|
||||
uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
|
||||
if (offset >= 0)
|
||||
{
|
||||
for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
|
||||
{
|
||||
struct vm_area_struct *vma = NULL;
|
||||
mm_create_vma(current_pcb->mm, i, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
|
||||
mm_map(current_pcb->mm, i, PAGE_2M_SIZE, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys);
|
||||
// mm_map_vma(vma, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, 0, PAGE_2M_SIZE);
|
||||
}
|
||||
current_pcb->mm->brk_end = end_addr;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
// 释放堆内存
|
||||
for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
|
||||
{
|
||||
uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
|
||||
|
||||
// 找到对应的页
|
||||
struct Page *p = mm_find_page(phys, ZONE_NORMAL);
|
||||
if (p == NULL)
|
||||
{
|
||||
kerror("cannot find page addr=%#018lx", phys);
|
||||
return end_addr;
|
||||
}
|
||||
|
||||
free_pages(p, 1);
|
||||
}
|
||||
|
||||
mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
|
||||
// 在页表中取消映射
|
||||
}
|
||||
return end_addr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 创建mmio对应的页结构体
|
||||
*
|
||||
* @param paddr 物理地址
|
||||
* @return struct Page* 创建成功的page
|
||||
*/
|
||||
struct Page *__create_mmio_page_struct(uint64_t paddr)
|
||||
{
|
||||
struct Page *p = (struct Page *)kzalloc(sizeof(struct Page), 0);
|
||||
if (p == NULL)
|
||||
return NULL;
|
||||
p->addr_phys = paddr;
|
||||
page_init(p, PAGE_DEVICE);
|
||||
return p;
|
||||
}
|
@ -6,9 +6,9 @@
|
||||
#include <mm/mm-types.h>
|
||||
#include <process/process.h>
|
||||
|
||||
extern void rs_pseudo_map_phys(uint64_t virt_addr, uint64_t phys_addr, uint64_t size);
|
||||
extern void rs_map_phys(uint64_t virt_addr, uint64_t phys_addr, uint64_t size, uint64_t flags);
|
||||
extern uint64_t rs_unmap_at_low_addr();
|
||||
// 每个页表的项数
|
||||
// 64位下,每个页表4k,每条页表项8B,故一个页表有512条
|
||||
#define PTRS_PER_PGT 512
|
||||
|
||||
// 内核层的起始地址
|
||||
#define PAGE_OFFSET 0xffff800000000000UL
|
||||
@ -39,6 +39,9 @@ extern uint64_t rs_unmap_at_low_addr();
|
||||
// 虚拟地址与物理地址转换
|
||||
#define virt_2_phys(addr) ((unsigned long)(addr)-PAGE_OFFSET)
|
||||
#define phys_2_virt(addr) ((unsigned long *)((unsigned long)(addr) + PAGE_OFFSET))
|
||||
// 获取对应的页结构体
|
||||
#define Virt_To_2M_Page(kaddr) (memory_management_struct.pages_struct + (virt_2_phys(kaddr) >> PAGE_2M_SHIFT))
|
||||
#define Phy_to_2M_Page(kaddr) (memory_management_struct.pages_struct + ((unsigned long)(kaddr) >> PAGE_2M_SHIFT))
|
||||
|
||||
// 在这个地址以上的虚拟空间,用来进行特殊的映射
|
||||
#define SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE 0xffffa00000000000UL
|
||||
@ -46,6 +49,7 @@ extern uint64_t rs_unmap_at_low_addr();
|
||||
#define IO_APIC_MAPPING_OFFSET 0xfec00000UL
|
||||
#define LOCAL_APIC_MAPPING_OFFSET 0xfee00000UL
|
||||
#define AHCI_MAPPING_OFFSET 0xff200000UL // AHCI 映射偏移量,之后使用了4M的地址
|
||||
#define XHCI_MAPPING_OFFSET 0x100000000 // XHCI控制器映射偏移量(后方请预留1GB的虚拟空间来映射不同的controller)
|
||||
|
||||
// ===== 内存区域属性 =====
|
||||
// DMA区域
|
||||
@ -134,21 +138,59 @@ extern uint64_t rs_unmap_at_low_addr();
|
||||
|
||||
#define PAGE_USER_4K_PAGE (PAGE_U_S | PAGE_R_W | PAGE_PRESENT)
|
||||
|
||||
// ===== 错误码定义 ====
|
||||
// 物理页结构体为空
|
||||
#define EPAGE_NULL 1
|
||||
|
||||
/**
|
||||
* @brief 刷新TLB的宏定义
|
||||
* 由于任何写入cr3的操作都会刷新TLB,因此这个宏定义可以刷新TLB
|
||||
*/
|
||||
#define flush_tlb() \
|
||||
do \
|
||||
{ \
|
||||
ul tmp; \
|
||||
io_mfence(); \
|
||||
__asm__ __volatile__("movq %%cr3, %0\n\t" \
|
||||
"movq %0, %%cr3\n\t" \
|
||||
: "=r"(tmp)::"memory"); \
|
||||
\
|
||||
#define flush_tlb() \
|
||||
do \
|
||||
{ \
|
||||
ul tmp; \
|
||||
io_mfence(); \
|
||||
__asm__ __volatile__("movq %%cr3, %0\n\t" \
|
||||
"movq %0, %%cr3\n\t" \
|
||||
: "=r"(tmp)::"memory"); \
|
||||
\
|
||||
} while (0);
|
||||
|
||||
/**
|
||||
* @brief 系统内存信息结构体(单位:字节)
|
||||
*
|
||||
*/
|
||||
struct mm_stat_t
|
||||
{
|
||||
uint64_t total; // 计算机的总内存数量大小
|
||||
uint64_t used; // 已使用的内存大小
|
||||
uint64_t free; // 空闲物理页所占的内存大小
|
||||
uint64_t shared; // 共享的内存大小
|
||||
uint64_t cache_used; // 位于slab缓冲区中的已使用的内存大小
|
||||
uint64_t cache_free; // 位于slab缓冲区中的空闲的内存大小
|
||||
uint64_t available; // 系统总空闲内存大小(包括kmalloc缓冲区)
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 虚拟内存区域的操作方法的结构体
|
||||
*
|
||||
*/
|
||||
struct vm_operations_t
|
||||
{
|
||||
/**
|
||||
* @brief vm area 被打开时的回调函数
|
||||
*
|
||||
*/
|
||||
void (*open)(struct vm_area_struct *area);
|
||||
/**
|
||||
* @brief vm area将要被移除的时候,将会调用该回调函数
|
||||
*
|
||||
*/
|
||||
void (*close)(struct vm_area_struct *area);
|
||||
};
|
||||
|
||||
extern struct memory_desc memory_management_struct;
|
||||
|
||||
// 导出内核程序的几个段的起止地址
|
||||
extern char _text;
|
||||
@ -161,6 +203,26 @@ extern char _bss;
|
||||
extern char _ebss;
|
||||
extern char _end;
|
||||
|
||||
// 每个区域的索引
|
||||
|
||||
int ZONE_DMA_INDEX = 0;
|
||||
int ZONE_NORMAL_INDEX = 0;
|
||||
int ZONE_UNMAPPED_INDEX = 0;
|
||||
|
||||
// 初始化内存管理单元
|
||||
void mm_init();
|
||||
|
||||
/**
|
||||
* @brief 初始化内存页
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @param flags 标志位
|
||||
* 本函数只负责初始化内存页,允许对同一页面进行多次初始化
|
||||
* 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long page_init(struct Page *page, ul flags);
|
||||
|
||||
/**
|
||||
* @brief 读取CR3寄存器的值(存储了页目录的基地址)
|
||||
*
|
||||
@ -169,11 +231,70 @@ extern char _end;
|
||||
unsigned long *get_CR3()
|
||||
{
|
||||
ul *tmp;
|
||||
__asm__ __volatile__("movq %%cr3, %0\n\t"
|
||||
: "=r"(tmp)::"memory");
|
||||
__asm__ __volatile__("movq %%cr3, %0\n\t" : "=r"(tmp)::"memory");
|
||||
return tmp;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
|
||||
*
|
||||
* @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
|
||||
* @param num 需要申请的内存页的数量 num<64
|
||||
* @param flags 将页面属性设置成flag
|
||||
* @return struct Page*
|
||||
*/
|
||||
struct Page *alloc_pages(unsigned int zone_select, int num, ul flags);
|
||||
|
||||
/**
|
||||
* @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
|
||||
*
|
||||
* @param p 物理页结构体
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long page_clean(struct Page *page);
|
||||
|
||||
/**
|
||||
* @brief 释放连续number个内存页
|
||||
*
|
||||
* @param page 第一个要被释放的页面的结构体
|
||||
* @param number 要释放的内存页数量 number<64
|
||||
*/
|
||||
void free_pages(struct Page *page, int number);
|
||||
|
||||
/**
|
||||
* @brief Get the page's attr
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @return ul 属性
|
||||
*/
|
||||
ul get_page_attr(struct Page *page);
|
||||
|
||||
/**
|
||||
* @brief Set the page's attr
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @param flags 属性
|
||||
* @return ul 错误码
|
||||
*/
|
||||
ul set_page_attr(struct Page *page, ul flags);
|
||||
|
||||
#define mk_pml4t(addr, attr) ((unsigned long)(addr) | (unsigned long)(attr))
|
||||
/**
|
||||
* @brief 设置pml4页表的页表项
|
||||
* @param pml4tptr pml4页表项的地址
|
||||
* @param pml4val pml4页表项的值
|
||||
*/
|
||||
#define set_pml4t(pml4tptr, pml4tval) (*(pml4tptr) = (pml4tval))
|
||||
|
||||
#define mk_pdpt(addr, attr) ((unsigned long)(addr) | (unsigned long)(attr))
|
||||
#define set_pdpt(pdptptr, pdptval) (*(pdptptr) = (pdptval))
|
||||
|
||||
#define mk_pdt(addr, attr) ((unsigned long)(addr) | (unsigned long)(attr))
|
||||
#define set_pdt(pdtptr, pdtval) (*(pdtptr) = (pdtval))
|
||||
|
||||
#define mk_pt(addr, attr) ((unsigned long)(addr) | (unsigned long)(attr))
|
||||
#define set_pt(ptptr, ptval) (*(ptptr) = (ptval))
|
||||
|
||||
/*
|
||||
* vm_area_struct中的vm_flags的可选值
|
||||
* 对应的结构体请见mm-types.h
|
||||
@ -191,3 +312,233 @@ unsigned long *get_CR3()
|
||||
|
||||
/* VMA basic access permission flags */
|
||||
#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
|
||||
|
||||
/**
|
||||
* @brief 初始化虚拟内存区域结构体
|
||||
*
|
||||
* @param vma
|
||||
* @param mm
|
||||
*/
|
||||
static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
|
||||
{
|
||||
memset(vma, 0, sizeof(struct vm_area_struct));
|
||||
vma->vm_mm = mm;
|
||||
vma->vm_prev = vma->vm_next = NULL;
|
||||
vma->vm_ops = NULL;
|
||||
list_init(&vma->anon_vma_list);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 判断给定的vma是否为当前进程所属的vma
|
||||
*
|
||||
* @param vma 给定的vma结构体
|
||||
* @return true
|
||||
* @return false
|
||||
*/
|
||||
static inline bool vma_is_foreign(struct vm_area_struct *vma)
|
||||
{
|
||||
if (current_pcb->mm == NULL)
|
||||
return true;
|
||||
if (current_pcb->mm != vma->vm_mm)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline bool vma_is_accessible(struct vm_area_struct *vma)
|
||||
{
|
||||
return vma->vm_flags & VM_ACCESS_FLAGS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 获取一块新的vma结构体,并将其与指定的mm进行绑定
|
||||
*
|
||||
* @param mm 与VMA绑定的内存空间分布结构体
|
||||
* @return struct vm_area_struct* 新的VMA
|
||||
*/
|
||||
struct vm_area_struct *vm_area_alloc(struct mm_struct *mm);
|
||||
|
||||
/**
|
||||
* @brief 释放vma结构体
|
||||
*
|
||||
* @param vma 待释放的vma结构体
|
||||
*/
|
||||
void vm_area_free(struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 从链表中删除指定的vma结构体
|
||||
*
|
||||
* @param vma
|
||||
*/
|
||||
void vm_area_del(struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 查找第一个符合“addr < vm_end”条件的vma
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param addr 虚拟地址
|
||||
* @return struct vm_area_struct* 符合条件的vma
|
||||
*/
|
||||
struct vm_area_struct *vma_find(struct mm_struct *mm, uint64_t addr);
|
||||
|
||||
/**
|
||||
* @brief 插入vma
|
||||
*
|
||||
* @param mm
|
||||
* @param vma
|
||||
* @return int
|
||||
*/
|
||||
int vma_insert(struct mm_struct *mm, struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 重新初始化页表的函数
|
||||
* 将所有物理页映射到线性地址空间
|
||||
*/
|
||||
void page_table_init();
|
||||
|
||||
/**
|
||||
* @brief 将物理地址映射到页表的函数
|
||||
*
|
||||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||||
* @param phys_addr_start 物理地址的起始位置
|
||||
* @param length 要映射的区域的长度(字节)
|
||||
* @param flags 标志位
|
||||
* @param use4k 是否使用4k页
|
||||
*/
|
||||
int mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool use4k);
|
||||
|
||||
/**
|
||||
* @brief 将将物理地址填写到进程的页表的函数
|
||||
*
|
||||
* @param proc_page_table_addr 页表的基地址
|
||||
* @param is_phys 页表的基地址是否为物理地址
|
||||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||||
* @param phys_addr_start 物理地址的起始位置
|
||||
* @param length 要映射的区域的长度(字节)
|
||||
* @param user 用户态是否可访问
|
||||
* @param flush 是否刷新tlb
|
||||
* @param use4k 是否使用4k页
|
||||
*/
|
||||
int mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length,
|
||||
ul flags, bool user, bool flush, bool use4k);
|
||||
|
||||
int mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags);
|
||||
|
||||
/**
|
||||
* @brief 从页表中清除虚拟地址的映射
|
||||
*
|
||||
* @param proc_page_table_addr 页表的地址
|
||||
* @param is_phys 页表地址是否为物理地址
|
||||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||||
* @param length 要清除的区域的长度
|
||||
*/
|
||||
void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length);
|
||||
|
||||
/**
|
||||
* @brief 取消当前进程的页表中的虚拟地址映射
|
||||
*
|
||||
* @param virt_addr 虚拟地址
|
||||
* @param length 地址长度
|
||||
*/
|
||||
#define mm_unmap_addr(virt_addr, length) ({ mm_unmap_proc_table((uint64_t)get_CR3(), true, virt_addr, length); })
|
||||
|
||||
/**
|
||||
* @brief 创建VMA
|
||||
*
|
||||
* @param mm 要绑定的内存空间分布结构体
|
||||
* @param vaddr 起始虚拟地址
|
||||
* @param length 长度(字节)
|
||||
* @param vm_flags vma的标志
|
||||
* @param vm_ops vma的操作接口
|
||||
* @param res_vma 返回的vma指针
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_create_vma(struct mm_struct *mm, uint64_t vaddr, uint64_t length, vm_flags_t vm_flags,
|
||||
struct vm_operations_t *vm_ops, struct vm_area_struct **res_vma);
|
||||
|
||||
/**
|
||||
* @brief 将指定的物理地址映射到指定的vma处
|
||||
*
|
||||
* @param vma 要进行映射的VMA结构体
|
||||
* @param paddr 起始物理地址
|
||||
* @param offset 要映射的起始位置在vma中的偏移量
|
||||
* @param length 要映射的长度
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_map_vma(struct vm_area_struct *vma, uint64_t paddr, uint64_t offset, uint64_t length);
|
||||
|
||||
/**
|
||||
* @brief 在页表中映射物理地址到指定的虚拟地址(需要页表中已存在对应的vma)
|
||||
*
|
||||
* @param mm 内存管理结构体
|
||||
* @param vaddr 虚拟地址
|
||||
* @param length 长度(字节)
|
||||
* @param paddr 物理地址
|
||||
* @return int 返回码
|
||||
*/
|
||||
int mm_map(struct mm_struct *mm, uint64_t vaddr, uint64_t length, uint64_t paddr);
|
||||
|
||||
/**
|
||||
* @brief 在页表中取消指定的vma的映射
|
||||
*
|
||||
* @param mm 指定的mm
|
||||
* @param vma 待取消映射的vma
|
||||
* @param paddr 返回的被取消映射的起始物理地址
|
||||
* @return int 返回码
|
||||
*/
|
||||
int mm_unmap_vma(struct mm_struct *mm, struct vm_area_struct *vma, uint64_t *paddr);
|
||||
|
||||
/**
|
||||
* @brief 解除一段虚拟地址的映射(这些地址必须在vma中存在)
|
||||
*
|
||||
* @param mm 内存空间结构体
|
||||
* @param vaddr 起始地址
|
||||
* @param length 结束地址
|
||||
* @param destroy 是否释放vma结构体
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_unmap(struct mm_struct *mm, uint64_t vaddr, uint64_t length, bool destroy);
|
||||
|
||||
/**
|
||||
* @brief 检测是否为有效的2M页(物理内存页)
|
||||
*
|
||||
* @param paddr 物理地址
|
||||
* @return int8_t 是 -> 1
|
||||
* 否 -> 0
|
||||
*/
|
||||
int8_t mm_is_2M_page(uint64_t paddr);
|
||||
|
||||
/**
|
||||
* @brief 检查页表是否存在不为0的页表项
|
||||
*
|
||||
* @param ptr 页表基指针
|
||||
* @return int8_t 存在 -> 1
|
||||
* 不存在 -> 0
|
||||
*/
|
||||
int8_t mm_check_page_table(uint64_t *ptr);
|
||||
|
||||
/**
|
||||
* @brief 调整堆区域的大小(暂时只能增加堆区域)
|
||||
*
|
||||
* @todo 缩小堆区域
|
||||
* @param old_brk_end_addr 原本的堆内存区域的结束地址
|
||||
* @param offset 新的地址相对于原地址的偏移量
|
||||
* @return uint64_t
|
||||
*/
|
||||
uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset);
|
||||
|
||||
/**
|
||||
* @brief 获取系统当前的内存信息(未上锁,不一定精准)
|
||||
*
|
||||
* @return struct mm_stat_t 内存信息结构体
|
||||
*/
|
||||
struct mm_stat_t mm_stat();
|
||||
|
||||
/**
|
||||
* @brief 检测指定地址是否已经被映射
|
||||
*
|
||||
* @param page_table_phys_addr 页表的物理地址
|
||||
* @param virt_addr 要检测的地址
|
||||
* @return true 已经被映射
|
||||
* @return false
|
||||
*/
|
||||
bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr);
|
582
kernel/src/mm/mmap.c
Normal file
582
kernel/src/mm/mmap.c
Normal file
@ -0,0 +1,582 @@
|
||||
#include "mm.h"
|
||||
#include "slab.h"
|
||||
#include "internal.h"
|
||||
#include <common/compiler.h>
|
||||
#include <debug/bug.h>
|
||||
|
||||
extern uint64_t mm_total_2M_pages;
|
||||
|
||||
/**
|
||||
* @brief 虚拟地址长度所需要的entry数量
|
||||
*
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
int64_t num_PML4E;
|
||||
int64_t num_PDPTE;
|
||||
int64_t num_PDE;
|
||||
int64_t num_PTE;
|
||||
} mm_pgt_entry_num_t;
|
||||
|
||||
/**
|
||||
* @brief 计算虚拟地址长度对应的页表entry数量
|
||||
*
|
||||
* @param length 长度
|
||||
* @param ent 返回的entry数量结构体
|
||||
*/
|
||||
static void mm_calculate_entry_num(uint64_t length, mm_pgt_entry_num_t *ent)
|
||||
{
|
||||
if (ent == NULL)
|
||||
return;
|
||||
ent->num_PML4E = (length + (1UL << PAGE_GDT_SHIFT) - 1) >> PAGE_GDT_SHIFT;
|
||||
ent->num_PDPTE = (length + PAGE_1G_SIZE - 1) >> PAGE_1G_SHIFT;
|
||||
ent->num_PDE = (length + PAGE_2M_SIZE - 1) >> PAGE_2M_SHIFT;
|
||||
ent->num_PTE = (length + PAGE_4K_SIZE - 1) >> PAGE_4K_SHIFT;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将物理地址映射到页表的函数
|
||||
*
|
||||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||||
* @param phys_addr_start 物理地址的起始位置
|
||||
* @param length 要映射的区域的长度(字节)
|
||||
* @param flags 标志位
|
||||
* @param use4k 是否使用4k页
|
||||
*/
|
||||
int mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool use4k)
|
||||
{
|
||||
uint64_t global_CR3 = (uint64_t)get_CR3();
|
||||
|
||||
return mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, false, true, use4k);
|
||||
}
|
||||
|
||||
int mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
|
||||
{
|
||||
uint64_t global_CR3 = (uint64_t)get_CR3();
|
||||
return mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, true, true, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将将物理地址填写到进程的页表的函数
|
||||
*
|
||||
* @param proc_page_table_addr 页表的基地址
|
||||
* @param is_phys 页表的基地址是否为物理地址
|
||||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||||
* @param phys_addr_start 物理地址的起始位置
|
||||
* @param length 要映射的区域的长度(字节)
|
||||
* @param user 用户态是否可访问
|
||||
* @param flush 是否刷新tlb
|
||||
* @param use4k 是否使用4k页
|
||||
*/
|
||||
int mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user, bool flush, bool use4k)
|
||||
{
|
||||
|
||||
// 计算线性地址对应的pml4页表项的地址
|
||||
mm_pgt_entry_num_t pgt_num;
|
||||
mm_calculate_entry_num(length, &pgt_num);
|
||||
|
||||
// 已映射的内存大小
|
||||
uint64_t length_mapped = 0;
|
||||
|
||||
// 对user标志位进行校正
|
||||
if ((flags & PAGE_U_S) != 0)
|
||||
user = true;
|
||||
else
|
||||
user = false;
|
||||
|
||||
uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
|
||||
uint64_t *pml4_ptr;
|
||||
if (is_phys)
|
||||
pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
|
||||
else
|
||||
pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
|
||||
|
||||
// 循环填写顶层页表
|
||||
for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
|
||||
{
|
||||
// 剩余需要处理的pml4E -1
|
||||
--(pgt_num.num_PML4E);
|
||||
|
||||
ul *pml4e_ptr = pml4_ptr + pml4e_id;
|
||||
|
||||
// 创建新的二级页表
|
||||
if (*pml4e_ptr == 0)
|
||||
{
|
||||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||||
memset(virt_addr, 0, PAGE_4K_SIZE);
|
||||
set_pml4t(pml4e_ptr, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
|
||||
}
|
||||
|
||||
uint64_t pdpte_id = (((virt_addr_start + length_mapped) >> PAGE_1G_SHIFT) & 0x1ff);
|
||||
uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
|
||||
|
||||
// 循环填写二级页表
|
||||
for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
|
||||
{
|
||||
--pgt_num.num_PDPTE;
|
||||
uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
|
||||
|
||||
// 创建新的三级页表
|
||||
if (*pdpte_ptr == 0)
|
||||
{
|
||||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||||
memset(virt_addr, 0, PAGE_4K_SIZE);
|
||||
set_pdpt(pdpte_ptr, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
|
||||
}
|
||||
|
||||
uint64_t pde_id = (((virt_addr_start + length_mapped) >> PAGE_2M_SHIFT) & 0x1ff);
|
||||
uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
|
||||
|
||||
// 循环填写三级页表,初始化2M物理页
|
||||
for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
|
||||
{
|
||||
--pgt_num.num_PDE;
|
||||
// 计算当前2M物理页对应的pdt的页表项的物理地址
|
||||
ul *pde_ptr = pd_ptr + pde_id;
|
||||
// ====== 使用4k页 =======
|
||||
if (unlikely(use4k))
|
||||
{
|
||||
// kdebug("use 4k");
|
||||
if (*pde_ptr == 0)
|
||||
{
|
||||
// 创建四级页表
|
||||
uint64_t *vaddr = kmalloc(PAGE_4K_SIZE, 0);
|
||||
memset(vaddr, 0, PAGE_4K_SIZE);
|
||||
set_pdt(pde_ptr, mk_pdt(virt_2_phys(vaddr), (user ? PAGE_USER_PDE : PAGE_KERNEL_PDE)));
|
||||
}
|
||||
else if (unlikely(*pde_ptr & (1 << 7)))
|
||||
{
|
||||
// 当前页表项已经被映射了2MB物理页
|
||||
goto failed;
|
||||
}
|
||||
|
||||
uint64_t pte_id = (((virt_addr_start + length_mapped) >> PAGE_4K_SHIFT) & 0x1ff);
|
||||
uint64_t *pt_ptr = (uint64_t *)phys_2_virt(*pde_ptr & (~0xfffUL));
|
||||
|
||||
// 循环填写4级页表,初始化4K页
|
||||
for (; (pgt_num.num_PTE > 0) && pte_id < 512; ++pte_id)
|
||||
{
|
||||
--pgt_num.num_PTE;
|
||||
uint64_t *pte_ptr = pt_ptr + pte_id;
|
||||
|
||||
if (unlikely(*pte_ptr != 0))
|
||||
kwarn("pte already exists.");
|
||||
else
|
||||
set_pt(pte_ptr, mk_pt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_4K_PAGE : PAGE_KERNEL_4K_PAGE)));
|
||||
length_mapped += PAGE_4K_SIZE;
|
||||
}
|
||||
}
|
||||
// ======= 使用2M页 ========
|
||||
else
|
||||
{
|
||||
if (unlikely((*pde_ptr != 0) && user == true))
|
||||
{
|
||||
// 如果是用户态可访问的页,则释放当前新获取的物理页
|
||||
if (likely((((ul)phys_addr_start + length_mapped) >> PAGE_2M_SHIFT) < mm_total_2M_pages)) // 校验是否为内存中的物理页
|
||||
free_pages(Phy_to_2M_Page((ul)phys_addr_start + length_mapped), 1);
|
||||
length_mapped += PAGE_2M_SIZE;
|
||||
continue;
|
||||
}
|
||||
// 页面写穿,禁止缓存
|
||||
set_pdt(pde_ptr, mk_pdt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
|
||||
length_mapped += PAGE_2M_SIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (likely(flush))
|
||||
flush_tlb();
|
||||
return 0;
|
||||
failed:;
|
||||
kerror("Map memory failed. use4k=%d, vaddr=%#018lx, paddr=%#018lx", use4k, virt_addr_start, phys_addr_start);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从页表中清除虚拟地址的映射
|
||||
*
|
||||
* @param proc_page_table_addr 页表的地址
|
||||
* @param is_phys 页表地址是否为物理地址
|
||||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||||
* @param length 要清除的区域的长度
|
||||
*/
|
||||
void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)
|
||||
{
|
||||
|
||||
// 计算线性地址对应的pml4页表项的地址
|
||||
mm_pgt_entry_num_t pgt_num;
|
||||
mm_calculate_entry_num(length, &pgt_num);
|
||||
// 已取消映射的内存大小
|
||||
uint64_t length_unmapped = 0;
|
||||
|
||||
uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
|
||||
uint64_t *pml4_ptr;
|
||||
if (is_phys)
|
||||
pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
|
||||
else
|
||||
pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
|
||||
|
||||
// 循环填写顶层页表
|
||||
for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
|
||||
{
|
||||
// 剩余需要处理的pml4E -1
|
||||
--(pgt_num.num_PML4E);
|
||||
|
||||
ul *pml4e_ptr = NULL;
|
||||
pml4e_ptr = pml4_ptr + pml4e_id;
|
||||
|
||||
// 二级页表不存在
|
||||
if (*pml4e_ptr == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
uint64_t pdpte_id = (((virt_addr_start + length_unmapped) >> PAGE_1G_SHIFT) & 0x1ff);
|
||||
uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
|
||||
// kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
|
||||
|
||||
// 循环处理二级页表
|
||||
for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
|
||||
{
|
||||
--pgt_num.num_PDPTE;
|
||||
uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
|
||||
// kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
|
||||
|
||||
// 三级页表为空
|
||||
if (*pdpte_ptr == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
uint64_t pde_id = (((virt_addr_start + length_unmapped) >> PAGE_2M_SHIFT) & 0x1ff);
|
||||
uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
|
||||
// kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
|
||||
|
||||
// 循环处理三级页表
|
||||
for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
|
||||
{
|
||||
--pgt_num.num_PDE;
|
||||
// 计算当前2M物理页对应的pdt的页表项的物理地址
|
||||
ul *pde_ptr = pd_ptr + pde_id;
|
||||
|
||||
// 存在4级页表
|
||||
if (((*pde_ptr) & (1 << 7)) == 0)
|
||||
{
|
||||
// 存在4K页
|
||||
uint64_t pte_id = (((virt_addr_start + length_unmapped) >> PAGE_4K_SHIFT) & 0x1ff);
|
||||
uint64_t *pt_ptr = (uint64_t *)phys_2_virt(*pde_ptr & (~0xfffUL));
|
||||
// 循环处理4K页表
|
||||
for (; pgt_num.num_PTE > 0 && pte_id < 512; ++pte_id)
|
||||
{
|
||||
uint64_t *pte_ptr = pt_ptr + pte_id;
|
||||
--pgt_num.num_PTE;
|
||||
*pte_ptr = 0;
|
||||
length_unmapped += PAGE_4K_SIZE;
|
||||
}
|
||||
|
||||
// 4级页表已经空了,释放页表
|
||||
if (unlikely(mm_check_page_table(pt_ptr)) == 0)
|
||||
{
|
||||
*pde_ptr = 0;
|
||||
kfree(pt_ptr);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
*pde_ptr = 0;
|
||||
length_unmapped += PAGE_2M_SIZE;
|
||||
pgt_num.num_PTE -= 512;
|
||||
}
|
||||
}
|
||||
|
||||
// 3级页表已经空了,释放页表
|
||||
if (unlikely(mm_check_page_table(pd_ptr)) == 0)
|
||||
{
|
||||
*pdpte_ptr = 0;
|
||||
kfree(pd_ptr);
|
||||
}
|
||||
}
|
||||
// 2级页表已经空了,释放页表
|
||||
if (unlikely(mm_check_page_table(pdpt_ptr)) == 0)
|
||||
{
|
||||
*pml4e_ptr = 0;
|
||||
kfree(pdpt_ptr);
|
||||
}
|
||||
}
|
||||
flush_tlb();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 创建VMA
|
||||
*
|
||||
* @param mm 要绑定的内存空间分布结构体
|
||||
* @param vaddr 起始虚拟地址
|
||||
* @param length 长度(字节)
|
||||
* @param vm_flags vma的标志
|
||||
* @param vm_ops vma的操作接口
|
||||
* @param res_vma 返回的vma指针
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_create_vma(struct mm_struct *mm, uint64_t vaddr, uint64_t length, vm_flags_t vm_flags, struct vm_operations_t *vm_ops, struct vm_area_struct **res_vma)
|
||||
{
|
||||
int retval = 0;
|
||||
// 输入的地址如果不是4K对齐,则报错
|
||||
if (unlikely(vaddr & (PAGE_4K_SIZE - 1)))
|
||||
return -EINVAL;
|
||||
|
||||
struct vm_area_struct *vma = vm_area_alloc(mm);
|
||||
if (unlikely(vma == NULL))
|
||||
return -ENOMEM;
|
||||
vma->vm_ops = vm_ops;
|
||||
vma->vm_flags = vm_flags;
|
||||
vma->vm_start = vaddr;
|
||||
vma->vm_end = vaddr + length;
|
||||
// 将VMA加入mm的链表
|
||||
retval = vma_insert(mm, vma);
|
||||
if (retval == -EEXIST || retval == __VMA_MERGED) // 之前已经存在了相同的vma,直接返回
|
||||
{
|
||||
*res_vma = vma_find(mm, vma->vm_start);
|
||||
kfree(vma);
|
||||
if (retval == -EEXIST)
|
||||
return -EEXIST;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (res_vma != NULL)
|
||||
*res_vma = vma;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将指定的物理地址映射到指定的vma处
|
||||
*
|
||||
* @param vma 要进行映射的VMA结构体
|
||||
* @param paddr 起始物理地址
|
||||
* @param offset 要映射的起始位置在vma中的偏移量
|
||||
* @param length 要映射的长度
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_map_vma(struct vm_area_struct *vma, uint64_t paddr, uint64_t offset, uint64_t length)
|
||||
{
|
||||
int retval = 0;
|
||||
uint64_t mapped = 0;
|
||||
BUG_ON((offset & (PAGE_4K_SIZE - 1)) != 0);
|
||||
length = PAGE_4K_ALIGN(length); // 将length按照4K进行对齐
|
||||
// 获取物理地址对应的页面
|
||||
struct Page *pg;
|
||||
uint64_t page_flags = 0;
|
||||
if (vma->vm_flags & VM_IO) // 对于mmio的内存,创建新的page结构体
|
||||
{
|
||||
page_flags = PAGE_PWT | PAGE_PCD;
|
||||
if (unlikely(vma->anon_vma == NULL || vma->anon_vma->page == NULL))
|
||||
pg = __create_mmio_page_struct(paddr);
|
||||
else
|
||||
pg = vma->anon_vma->page;
|
||||
}
|
||||
else
|
||||
pg = Phy_to_2M_Page(paddr);
|
||||
|
||||
if (unlikely(pg->anon_vma == NULL)) // 若页面不存在anon_vma,则为页面创建anon_vma
|
||||
{
|
||||
spin_lock(&pg->op_lock);
|
||||
if (unlikely(pg->anon_vma == NULL))
|
||||
__anon_vma_create_alloc(pg, false);
|
||||
spin_unlock(&pg->op_lock);
|
||||
}
|
||||
barrier();
|
||||
// 将anon vma与vma进行绑定
|
||||
__anon_vma_add(pg->anon_vma, vma);
|
||||
barrier();
|
||||
// 长度超过界限
|
||||
BUG_ON(vma->vm_start + offset + length > vma->vm_end);
|
||||
|
||||
/*
|
||||
todo: 限制页面的读写权限
|
||||
*/
|
||||
|
||||
// ==== 将地址映射到页表 ====
|
||||
uint64_t len_4k, len_2m;
|
||||
// 将地址使用4k页填补,使得地址按照2M对齐
|
||||
len_4k = PAGE_2M_ALIGN(vma->vm_start + offset) - (vma->vm_start + offset);
|
||||
if (len_4k > 0)
|
||||
len_4k = (len_4k > length) ? length : len_4k;
|
||||
if (len_4k)
|
||||
{
|
||||
if (vma->vm_flags & VM_USER)
|
||||
page_flags |= PAGE_USER_4K_PAGE;
|
||||
else
|
||||
page_flags |= PAGE_KERNEL_4K_PAGE;
|
||||
|
||||
// 这里直接设置user标志位为false,因为该函数内部会对其进行自动校正
|
||||
retval = mm_map_proc_page_table((uint64_t)vma->vm_mm->pgd, true, vma->vm_start + offset, paddr, len_4k, page_flags, false, false, true);
|
||||
if (unlikely(retval != 0))
|
||||
goto failed;
|
||||
|
||||
mapped += len_4k;
|
||||
length -= len_4k;
|
||||
}
|
||||
|
||||
len_4k = length % PAGE_2M_SIZE;
|
||||
len_2m = length / PAGE_2M_SIZE;
|
||||
|
||||
// 映射连续的2M页
|
||||
if (likely(len_2m > 0))
|
||||
{
|
||||
if (vma->vm_flags & VM_USER)
|
||||
page_flags |= PAGE_USER_PAGE;
|
||||
else
|
||||
page_flags |= PAGE_KERNEL_PAGE;
|
||||
// 这里直接设置user标志位为false,因为该函数内部会对其进行自动校正
|
||||
retval = mm_map_proc_page_table((uint64_t)vma->vm_mm->pgd, true, vma->vm_start + offset + mapped, paddr + mapped, len_2m, page_flags, false, false, false);
|
||||
|
||||
if (unlikely(retval != 0))
|
||||
goto failed;
|
||||
mapped += len_2m;
|
||||
}
|
||||
// 最后再使用4K页填补
|
||||
if (likely(len_4k > 0))
|
||||
{
|
||||
|
||||
if (vma->vm_flags & VM_USER)
|
||||
page_flags |= PAGE_USER_4K_PAGE;
|
||||
else
|
||||
page_flags |= PAGE_KERNEL_4K_PAGE;
|
||||
|
||||
// 这里直接设置user标志位为false,因为该函数内部会对其进行自动校正
|
||||
retval = mm_map_proc_page_table((uint64_t)vma->vm_mm->pgd, true, vma->vm_start + offset + mapped, paddr + mapped, len_4k, page_flags, false, false, true);
|
||||
|
||||
if (unlikely(retval != 0))
|
||||
goto failed;
|
||||
mapped += len_4k;
|
||||
}
|
||||
|
||||
if (vma->vm_flags & VM_IO)
|
||||
vma->page_offset = 0;
|
||||
|
||||
flush_tlb();
|
||||
return 0;
|
||||
failed:;
|
||||
kdebug("map VMA failed.");
|
||||
return retval;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 在页表中映射物理地址到指定的虚拟地址(需要页表中已存在对应的vma)
|
||||
*
|
||||
* @param mm 内存管理结构体
|
||||
* @param vaddr 虚拟地址
|
||||
* @param length 长度(字节)
|
||||
* @param paddr 物理地址
|
||||
* @return int 返回码
|
||||
*/
|
||||
int mm_map(struct mm_struct *mm, uint64_t vaddr, uint64_t length, uint64_t paddr)
|
||||
{
|
||||
int retval = 0;
|
||||
uint64_t offset = 0;
|
||||
for (uint64_t mapped = 0; mapped < length;)
|
||||
{
|
||||
|
||||
struct vm_area_struct *vma = vma_find(mm, vaddr + mapped);
|
||||
if (unlikely(vma == NULL))
|
||||
{
|
||||
kerror("Map addr failed: vma not found. At address: %#018lx, pid=%ld", vaddr + mapped, current_pcb->pid);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
// if (unlikely(vma->vm_start != (vaddr + mapped)))
|
||||
// {
|
||||
// kerror("Map addr failed: addr_start is not equal to current: %#018lx.", vaddr + mapped);
|
||||
// return -EINVAL;
|
||||
// }
|
||||
|
||||
offset = vaddr + mapped - vma->vm_start;
|
||||
uint64_t m_len = vma->vm_end - vma->vm_start - offset;
|
||||
// kdebug("start=%#018lx, offset=%ld", vma->vm_start, offset);
|
||||
retval = mm_map_vma(vma, paddr + mapped, offset, m_len);
|
||||
if (unlikely(retval != 0))
|
||||
goto failed;
|
||||
|
||||
mapped += m_len;
|
||||
}
|
||||
return 0;
|
||||
failed:;
|
||||
kerror("Map addr failed.");
|
||||
return retval;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 在页表中取消指定的vma的映射
|
||||
*
|
||||
* @param mm 指定的mm
|
||||
* @param vma 待取消映射的vma
|
||||
* @param paddr 返回的被取消映射的起始物理地址
|
||||
* @return int 返回码
|
||||
*/
|
||||
int mm_unmap_vma(struct mm_struct *mm, struct vm_area_struct *vma, uint64_t *paddr)
|
||||
{
|
||||
// 确保vma对应的mm与指定的mm相一致
|
||||
if (unlikely(vma->vm_mm != mm))
|
||||
return -EINVAL;
|
||||
struct anon_vma_t *anon = vma->anon_vma;
|
||||
if (paddr != NULL)
|
||||
*paddr = __mm_get_paddr(mm, vma->vm_start);
|
||||
if (anon == NULL)
|
||||
kwarn("anon is NULL");
|
||||
semaphore_down(&anon->sem);
|
||||
|
||||
mm_unmap_proc_table((uint64_t)mm->pgd, true, vma->vm_start, vma->vm_end - vma->vm_start);
|
||||
__anon_vma_del(vma);
|
||||
/** todo: 这里应该会存在bug,应修复。
|
||||
* 若anon_vma的等待队列上有其他的进程,由于anon_vma被释放
|
||||
* 这些在等待队列上的进程将无法被唤醒。
|
||||
*/
|
||||
list_init(&vma->anon_vma_list);
|
||||
|
||||
semaphore_up(&anon->sem);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 解除一段虚拟地址的映射(这些地址必须在vma中存在)
|
||||
*
|
||||
* @param mm 内存空间结构体
|
||||
* @param vaddr 起始地址
|
||||
* @param length 结束地址
|
||||
* @param destroy 是否释放vma结构体
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_unmap(struct mm_struct *mm, uint64_t vaddr, uint64_t length, bool destroy)
|
||||
{
|
||||
int retval = 0;
|
||||
for (uint64_t unmapped = 0; unmapped < length;)
|
||||
{
|
||||
struct vm_area_struct *vma = vma_find(mm, vaddr + unmapped);
|
||||
if (unlikely(vma == NULL))
|
||||
{
|
||||
kerror("Unmap addr failed: vma not found. At address: %#018lx, pid=%ld", vaddr + unmapped, current_pcb->pid);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (unlikely(vma->vm_start != (vaddr + unmapped)))
|
||||
{
|
||||
kerror("Unmap addr failed: addr_start is not equal to current: %#018lx.", vaddr + unmapped);
|
||||
return -EINVAL;
|
||||
}
|
||||
if (vma->anon_vma != NULL)
|
||||
mm_unmap_vma(mm, vma, NULL);
|
||||
|
||||
unmapped += vma->vm_end - vma->vm_start;
|
||||
// 释放vma结构体
|
||||
if (destroy)
|
||||
{
|
||||
vm_area_del(vma);
|
||||
vm_area_free(vma);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
failed:;
|
||||
kerror("Unmap addr failed.");
|
||||
return retval;
|
||||
}
|
9
kernel/src/mm/mmio.c
Normal file
9
kernel/src/mm/mmio.c
Normal file
@ -0,0 +1,9 @@
|
||||
#include "mmio.h"
|
||||
#include <common/math.h>
|
||||
extern void __mmio_buddy_init();
|
||||
|
||||
void mmio_init()
|
||||
{
|
||||
__mmio_buddy_init();
|
||||
kinfo("mmio_init success");
|
||||
}
|
@ -1,5 +1,7 @@
|
||||
#pragma once
|
||||
#include "mm.h"
|
||||
|
||||
extern void mmio_create(uint32_t size, uint64_t vm_flagsu, uint64_t* res_vaddr, uint64_t* res_length);
|
||||
extern void mmio_buddy_init();
|
||||
extern void mmio_create();
|
||||
extern int mmio_release(int vaddr, int length);
|
||||
void mmio_init();
|
||||
|
@ -1,19 +1,16 @@
|
||||
use crate::libs::spinlock::{SpinLock, SpinLockGuard};
|
||||
use crate::mm::kernel_mapper::KernelMapper;
|
||||
use crate::syscall::SystemError;
|
||||
use crate::{
|
||||
arch::asm::current::current_pcb,
|
||||
include::bindings::bindings::{vm_flags_t, PAGE_1G_SHIFT, PAGE_4K_SHIFT, PAGE_4K_SIZE},
|
||||
kdebug,
|
||||
mm::{MMArch, MemoryManagementArch},
|
||||
include::bindings::bindings::{
|
||||
initial_mm, mm_create_vma, mm_unmap, vm_area_del, vm_area_free, vm_area_struct, vm_flags_t,
|
||||
vma_find, MMIO_BASE, MMIO_TOP, PAGE_1G_SHIFT, PAGE_1G_SIZE, PAGE_2M_SIZE, PAGE_4K_SHIFT,
|
||||
PAGE_4K_SIZE, VM_DONTCOPY, VM_IO,
|
||||
},
|
||||
kdebug, kerror,
|
||||
};
|
||||
use crate::{kerror, kinfo, kwarn};
|
||||
use alloc::{collections::LinkedList, vec::Vec};
|
||||
use core::mem;
|
||||
use core::mem::MaybeUninit;
|
||||
use core::sync::atomic::{compiler_fence, Ordering};
|
||||
|
||||
use super::VirtAddr;
|
||||
use alloc::{boxed::Box, collections::LinkedList, vec::Vec};
|
||||
use core::{mem, ptr::null_mut};
|
||||
|
||||
// 最大的伙伴块的幂
|
||||
const MMIO_BUDDY_MAX_EXP: u32 = PAGE_1G_SHIFT;
|
||||
@ -22,15 +19,8 @@ const MMIO_BUDDY_MIN_EXP: u32 = PAGE_4K_SHIFT;
|
||||
// 内存池数组的范围
|
||||
const MMIO_BUDDY_REGION_COUNT: u32 = MMIO_BUDDY_MAX_EXP - MMIO_BUDDY_MIN_EXP + 1;
|
||||
|
||||
const MMIO_BASE: VirtAddr = VirtAddr::new(0xffffa10000000000);
|
||||
const MMIO_TOP: VirtAddr = VirtAddr::new(0xffffa20000000000);
|
||||
|
||||
const PAGE_1G_SIZE: usize = 1 << 30;
|
||||
|
||||
static mut __MMIO_POOL: Option<MmioBuddyMemPool> = None;
|
||||
|
||||
pub fn mmio_pool() -> &'static mut MmioBuddyMemPool {
|
||||
unsafe { __MMIO_POOL.as_mut().unwrap() }
|
||||
lazy_static! {
|
||||
pub static ref MMIO_POOL: MmioBuddyMemPool = MmioBuddyMemPool::new();
|
||||
}
|
||||
|
||||
pub enum MmioResult {
|
||||
@ -42,49 +32,25 @@ pub enum MmioResult {
|
||||
}
|
||||
|
||||
/// @brief buddy内存池
|
||||
#[derive(Debug)]
|
||||
pub struct MmioBuddyMemPool {
|
||||
pool_start_addr: VirtAddr,
|
||||
pool_size: usize,
|
||||
pool_start_addr: u64,
|
||||
pool_size: u64,
|
||||
free_regions: [SpinLock<MmioFreeRegionList>; MMIO_BUDDY_REGION_COUNT as usize],
|
||||
}
|
||||
|
||||
impl Default for MmioBuddyMemPool {
|
||||
fn default() -> Self {
|
||||
MmioBuddyMemPool {
|
||||
pool_start_addr: MMIO_BASE as u64,
|
||||
pool_size: (MMIO_TOP - MMIO_BASE) as u64,
|
||||
free_regions: unsafe { mem::zeroed() },
|
||||
}
|
||||
}
|
||||
}
|
||||
impl MmioBuddyMemPool {
|
||||
fn new() -> Self {
|
||||
let mut free_regions: [MaybeUninit<SpinLock<MmioFreeRegionList>>;
|
||||
MMIO_BUDDY_REGION_COUNT as usize] = unsafe { MaybeUninit::uninit().assume_init() };
|
||||
for i in 0..MMIO_BUDDY_REGION_COUNT {
|
||||
free_regions[i as usize] = MaybeUninit::new(SpinLock::new(MmioFreeRegionList::new()));
|
||||
}
|
||||
let free_regions = unsafe {
|
||||
mem::transmute::<_, [SpinLock<MmioFreeRegionList>; MMIO_BUDDY_REGION_COUNT as usize]>(
|
||||
free_regions,
|
||||
)
|
||||
return MmioBuddyMemPool {
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
let pool = MmioBuddyMemPool {
|
||||
pool_start_addr: MMIO_BASE,
|
||||
pool_size: MMIO_TOP - MMIO_BASE,
|
||||
free_regions,
|
||||
};
|
||||
kdebug!("MMIO buddy pool init: created");
|
||||
|
||||
let cnt_1g_blocks = (MMIO_TOP - MMIO_BASE) >> 30;
|
||||
let mut vaddr_base = MMIO_BASE;
|
||||
kdebug!("total 1G blocks: {cnt_1g_blocks}");
|
||||
for _i in 0..cnt_1g_blocks {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
match pool.give_back_block(vaddr_base, PAGE_1G_SHIFT) {
|
||||
Ok(_) => {
|
||||
vaddr_base += PAGE_1G_SIZE;
|
||||
}
|
||||
Err(_) => {
|
||||
panic!("MMIO buddy pool init failed");
|
||||
}
|
||||
}
|
||||
}
|
||||
kdebug!("MMIO buddy pool init success");
|
||||
return pool;
|
||||
}
|
||||
|
||||
/// @brief 创建新的地址区域结构体
|
||||
@ -92,12 +58,9 @@ impl MmioBuddyMemPool {
|
||||
/// @param vaddr 虚拟地址
|
||||
///
|
||||
/// @return 创建好的地址区域结构体
|
||||
fn create_region(&self, vaddr: VirtAddr) -> MmioBuddyAddrRegion {
|
||||
// kdebug!("create_region for vaddr: {vaddr:?}");
|
||||
|
||||
let region: MmioBuddyAddrRegion = MmioBuddyAddrRegion::new(vaddr);
|
||||
|
||||
// kdebug!("create_region for vaddr: {vaddr:?} OK!!!");
|
||||
fn create_region(&self, vaddr: u64) -> Box<MmioBuddyAddrRegion> {
|
||||
let mut region: Box<MmioBuddyAddrRegion> = Box::new(MmioBuddyAddrRegion::new());
|
||||
region.vaddr = vaddr;
|
||||
return region;
|
||||
}
|
||||
|
||||
@ -112,16 +75,16 @@ impl MmioBuddyMemPool {
|
||||
/// @return Ok(i32) 返回0
|
||||
///
|
||||
/// @return Err(SystemError) 返回错误码
|
||||
fn give_back_block(&self, vaddr: VirtAddr, exp: u32) -> Result<i32, SystemError> {
|
||||
fn give_back_block(&self, vaddr: u64, exp: u32) -> Result<i32, SystemError> {
|
||||
// 确保内存对齐,低位都要为0
|
||||
if (vaddr.data() & ((1 << exp) - 1)) != 0 {
|
||||
if (vaddr & ((1 << exp) - 1)) != 0 {
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
let region: MmioBuddyAddrRegion = self.create_region(vaddr);
|
||||
let region: Box<MmioBuddyAddrRegion> = self.create_region(vaddr);
|
||||
// 加入buddy
|
||||
let mut list_guard = self.free_regions[exp2index(exp)].lock();
|
||||
|
||||
self.push_block(region, &mut list_guard);
|
||||
let list_guard: &mut SpinLockGuard<MmioFreeRegionList> =
|
||||
&mut self.free_regions[exp2index(exp)].lock();
|
||||
self.push_block(region, list_guard);
|
||||
return Ok(0);
|
||||
}
|
||||
|
||||
@ -134,12 +97,12 @@ impl MmioBuddyMemPool {
|
||||
/// @param list_guard 【exp-1】对应的链表
|
||||
fn split_block(
|
||||
&self,
|
||||
region: MmioBuddyAddrRegion,
|
||||
region: Box<MmioBuddyAddrRegion>,
|
||||
exp: u32,
|
||||
low_list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) {
|
||||
let vaddr = self.calculate_block_vaddr(region.vaddr, exp - 1);
|
||||
let new_region: MmioBuddyAddrRegion = self.create_region(vaddr);
|
||||
let vaddr: u64 = self.calculate_block_vaddr(region.vaddr, exp - 1);
|
||||
let new_region: Box<MmioBuddyAddrRegion> = self.create_region(vaddr);
|
||||
self.push_block(region, low_list_guard);
|
||||
self.push_block(new_region, low_list_guard);
|
||||
}
|
||||
@ -150,7 +113,7 @@ impl MmioBuddyMemPool {
|
||||
///
|
||||
/// @param list_guard exp对应的链表
|
||||
///
|
||||
/// @return Ok(MmioBuddyAddrRegion) 符合要求的内存区域。
|
||||
/// @return Ok(Box<MmioBuddyAddrRegion>) 符合要求的内存区域。
|
||||
///
|
||||
/// @return Err(MmioResult)
|
||||
/// - 没有满足要求的内存块时,返回ENOFOUND
|
||||
@ -160,7 +123,7 @@ impl MmioBuddyMemPool {
|
||||
&self,
|
||||
exp: u32,
|
||||
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) -> Result<MmioBuddyAddrRegion, MmioResult> {
|
||||
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
|
||||
// 申请范围错误
|
||||
if exp < MMIO_BUDDY_MIN_EXP || exp > MMIO_BUDDY_MAX_EXP {
|
||||
kdebug!("query_addr_region: exp wrong");
|
||||
@ -293,9 +256,12 @@ impl MmioBuddyMemPool {
|
||||
///
|
||||
/// @param exp 内存区域的大小(2^exp)
|
||||
///
|
||||
/// @return Ok(MmioBuddyAddrRegion)符合要求的内存块信息结构体。
|
||||
/// @return Ok(Box<MmioBuddyAddrRegion>)符合要求的内存块信息结构体。
|
||||
/// @return Err(MmioResult) 没有满足要求的内存块时,返回__query_addr_region的错误码。
|
||||
fn mmio_buddy_query_addr_region(&self, exp: u32) -> Result<MmioBuddyAddrRegion, MmioResult> {
|
||||
fn mmio_buddy_query_addr_region(
|
||||
&self,
|
||||
exp: u32,
|
||||
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
|
||||
let list_guard: &mut SpinLockGuard<MmioFreeRegionList> =
|
||||
&mut self.free_regions[exp2index(exp)].lock();
|
||||
match self.query_addr_region(exp, list_guard) {
|
||||
@ -313,7 +279,7 @@ impl MmioBuddyMemPool {
|
||||
/// @param list_guard 目标链表
|
||||
fn push_block(
|
||||
&self,
|
||||
region: MmioBuddyAddrRegion,
|
||||
region: Box<MmioBuddyAddrRegion>,
|
||||
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) {
|
||||
list_guard.list.push_back(region);
|
||||
@ -322,8 +288,8 @@ impl MmioBuddyMemPool {
|
||||
|
||||
/// @brief 根据地址和内存块大小,计算伙伴块虚拟内存的地址
|
||||
#[inline(always)]
|
||||
fn calculate_block_vaddr(&self, vaddr: VirtAddr, exp: u32) -> VirtAddr {
|
||||
return VirtAddr::new(vaddr.data() ^ (1 << exp as usize));
|
||||
fn calculate_block_vaddr(&self, vaddr: u64, exp: u32) -> u64 {
|
||||
return vaddr ^ (1 << exp);
|
||||
}
|
||||
|
||||
/// @brief 寻找并弹出指定内存块的伙伴块
|
||||
@ -340,10 +306,10 @@ impl MmioBuddyMemPool {
|
||||
/// - 没有找到伙伴块,返回ENOFOUND
|
||||
fn pop_buddy_block(
|
||||
&self,
|
||||
vaddr: VirtAddr,
|
||||
vaddr: u64,
|
||||
exp: u32,
|
||||
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) -> Result<MmioBuddyAddrRegion, MmioResult> {
|
||||
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
|
||||
if list_guard.list.len() == 0 {
|
||||
return Err(MmioResult::ISEMPTY);
|
||||
} else {
|
||||
@ -351,7 +317,7 @@ impl MmioBuddyMemPool {
|
||||
let buddy_vaddr = self.calculate_block_vaddr(vaddr, exp);
|
||||
|
||||
// element 只会有一个元素
|
||||
let mut element: Vec<MmioBuddyAddrRegion> = list_guard
|
||||
let mut element: Vec<Box<MmioBuddyAddrRegion>> = list_guard
|
||||
.list
|
||||
.drain_filter(|x| x.vaddr == buddy_vaddr)
|
||||
.collect();
|
||||
@ -369,13 +335,13 @@ impl MmioBuddyMemPool {
|
||||
///
|
||||
/// @param list_guard 【exp】对应的链表
|
||||
///
|
||||
/// @return Ok(MmioBuddyAddrRegion) 内存块信息结构体的引用。
|
||||
/// @return Ok(Box<MmioBuddyAddrRegion>) 内存块信息结构体的引用。
|
||||
///
|
||||
/// @return Err(MmioResult) 当链表为空,无法删除时,返回ISEMPTY
|
||||
fn pop_block(
|
||||
&self,
|
||||
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) -> Result<MmioBuddyAddrRegion, MmioResult> {
|
||||
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
|
||||
if !list_guard.list.is_empty() {
|
||||
list_guard.num_free -= 1;
|
||||
return Ok(list_guard.list.pop_back().unwrap());
|
||||
@ -411,15 +377,17 @@ impl MmioBuddyMemPool {
|
||||
break;
|
||||
}
|
||||
// 获取内存块
|
||||
let vaddr: VirtAddr = list_guard.list.back().unwrap().vaddr;
|
||||
let vaddr: u64 = list_guard.list.back().unwrap().vaddr;
|
||||
// 获取伙伴内存块
|
||||
match self.pop_buddy_block(vaddr, exp, list_guard) {
|
||||
Err(err) => {
|
||||
return Err(err);
|
||||
}
|
||||
Ok(buddy_region) => {
|
||||
let region: MmioBuddyAddrRegion = list_guard.list.pop_back().unwrap();
|
||||
let copy_region = region.clone();
|
||||
let region: Box<MmioBuddyAddrRegion> = list_guard.list.pop_back().unwrap();
|
||||
let copy_region: Box<MmioBuddyAddrRegion> = Box::new(MmioBuddyAddrRegion {
|
||||
vaddr: region.vaddr,
|
||||
});
|
||||
// 在两块内存都被取出之后才进行合并
|
||||
match self.merge_blocks(region, buddy_region, exp, high_list_guard) {
|
||||
Err(err) => {
|
||||
@ -447,8 +415,8 @@ impl MmioBuddyMemPool {
|
||||
/// @return Err(MmioResult) 两个内存块不是伙伴块,返回EINVAL
|
||||
fn merge_blocks(
|
||||
&self,
|
||||
region_1: MmioBuddyAddrRegion,
|
||||
region_2: MmioBuddyAddrRegion,
|
||||
region_1: Box<MmioBuddyAddrRegion>,
|
||||
region_2: Box<MmioBuddyAddrRegion>,
|
||||
exp: u32,
|
||||
high_list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) -> Result<MmioResult, MmioResult> {
|
||||
@ -476,43 +444,102 @@ impl MmioBuddyMemPool {
|
||||
/// @return Err(SystemError) 失败返回错误码
|
||||
pub fn create_mmio(
|
||||
&self,
|
||||
size: usize,
|
||||
_vm_flags: vm_flags_t,
|
||||
size: u32,
|
||||
vm_flags: vm_flags_t,
|
||||
res_vaddr: *mut u64,
|
||||
res_length: *mut u64,
|
||||
) -> Result<i32, SystemError> {
|
||||
if size > PAGE_1G_SIZE || size == 0 {
|
||||
return Err(SystemError::EPERM);
|
||||
}
|
||||
let retval: i32 = 0;
|
||||
let mut retval: i32 = 0;
|
||||
// 计算前导0
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
let mut size_exp: u32 = 63 - size.leading_zeros();
|
||||
let mut size_exp: u32 = 31 - size.leading_zeros();
|
||||
// 记录最终申请的空间大小
|
||||
let mut new_size = size;
|
||||
let mut new_size: u32 = size;
|
||||
// 对齐要申请的空间大小
|
||||
// 如果要申请的空间大小小于4k,则分配4k
|
||||
if size_exp < PAGE_4K_SHIFT {
|
||||
new_size = PAGE_4K_SIZE as usize;
|
||||
new_size = PAGE_4K_SIZE;
|
||||
size_exp = PAGE_4K_SHIFT;
|
||||
} else if (new_size & (!(1 << size_exp))) != 0 {
|
||||
// 向左对齐空间大小
|
||||
size_exp += 1;
|
||||
new_size = 1 << size_exp;
|
||||
}
|
||||
match self.mmio_buddy_query_addr_region(size_exp) {
|
||||
match MMIO_POOL.mmio_buddy_query_addr_region(size_exp) {
|
||||
Ok(region) => {
|
||||
// todo: 是否需要创建vma?或者用新重写的机制去做?
|
||||
// kdebug!(
|
||||
// "create_mmio: vaddr = {:?}, length = {}",
|
||||
// region.vaddr,
|
||||
// new_size
|
||||
// );
|
||||
unsafe { *res_vaddr = region.vaddr.data() as u64 };
|
||||
unsafe { *res_length = new_size as u64 };
|
||||
unsafe {
|
||||
*res_vaddr = region.vaddr;
|
||||
*res_length = new_size as u64;
|
||||
}
|
||||
// 创建vma
|
||||
let flags: u64 = vm_flags | (VM_IO | VM_DONTCOPY) as u64;
|
||||
let len_4k: u64 = (new_size % PAGE_2M_SIZE) as u64;
|
||||
let len_2m: u64 = new_size as u64 - len_4k;
|
||||
let mut loop_i: u64 = 0;
|
||||
// 先分配2M的vma
|
||||
loop {
|
||||
if loop_i >= len_2m {
|
||||
break;
|
||||
}
|
||||
let vma: *mut *mut vm_area_struct = null_mut();
|
||||
retval = unsafe {
|
||||
mm_create_vma(
|
||||
&mut initial_mm,
|
||||
region.vaddr + loop_i,
|
||||
PAGE_2M_SIZE.into(),
|
||||
flags,
|
||||
null_mut(),
|
||||
vma,
|
||||
)
|
||||
};
|
||||
if retval != 0 {
|
||||
kdebug!(
|
||||
"failed to create mmio 2m vma. pid = {:?}",
|
||||
current_pcb().pid
|
||||
);
|
||||
unsafe {
|
||||
vm_area_del(*vma);
|
||||
vm_area_free(*vma);
|
||||
}
|
||||
return Err(SystemError::from_posix_errno(retval).unwrap());
|
||||
}
|
||||
loop_i += PAGE_2M_SIZE as u64;
|
||||
}
|
||||
// 分配4K的vma
|
||||
loop_i = len_2m;
|
||||
loop {
|
||||
if loop_i >= size as u64 {
|
||||
break;
|
||||
}
|
||||
let vma: *mut *mut vm_area_struct = null_mut();
|
||||
retval = unsafe {
|
||||
mm_create_vma(
|
||||
&mut initial_mm,
|
||||
region.vaddr + loop_i,
|
||||
PAGE_4K_SIZE.into(),
|
||||
flags,
|
||||
null_mut(),
|
||||
vma,
|
||||
)
|
||||
};
|
||||
if retval != 0 {
|
||||
kdebug!(
|
||||
"failed to create mmio 4k vma. pid = {:?}",
|
||||
current_pcb().pid
|
||||
);
|
||||
unsafe {
|
||||
vm_area_del(*vma);
|
||||
vm_area_free(*vma);
|
||||
}
|
||||
return Err(SystemError::from_posix_errno(retval).unwrap());
|
||||
}
|
||||
loop_i += PAGE_4K_SIZE as u64;
|
||||
}
|
||||
}
|
||||
Err(_) => {
|
||||
kerror!("failed to create mmio. pid = {:?}", current_pcb().pid);
|
||||
kdebug!("failed to create mmio vma.pid = {:?}", current_pcb().pid);
|
||||
return Err(SystemError::ENOMEM);
|
||||
}
|
||||
}
|
||||
@ -528,62 +555,83 @@ impl MmioBuddyMemPool {
|
||||
/// @return Ok(i32) 成功返回0
|
||||
///
|
||||
/// @return Err(SystemError) 失败返回错误码
|
||||
pub fn release_mmio(&self, vaddr: VirtAddr, length: usize) -> Result<i32, SystemError> {
|
||||
assert!(vaddr.check_aligned(MMArch::PAGE_SIZE));
|
||||
assert!(length & (MMArch::PAGE_SIZE - 1) == 0);
|
||||
if vaddr < self.pool_start_addr
|
||||
|| vaddr.data() >= self.pool_start_addr.data() + self.pool_size
|
||||
{
|
||||
return Err(SystemError::EINVAL);
|
||||
pub fn release_mmio(&self, vaddr: u64, length: u64) -> Result<i32, SystemError> {
|
||||
//先将要释放的空间取消映射
|
||||
unsafe {
|
||||
mm_unmap(&mut initial_mm, vaddr, length, false);
|
||||
}
|
||||
// todo: 重构MMIO管理机制,创建类似全局的manager之类的,管理MMIO的空间?
|
||||
|
||||
// 暂时认为传入的vaddr都是正确的
|
||||
let page_count = length / MMArch::PAGE_SIZE;
|
||||
// 取消映射
|
||||
let mut bindings = KernelMapper::lock();
|
||||
let mut kernel_mapper = bindings.as_mut();
|
||||
if kernel_mapper.is_none() {
|
||||
kwarn!("release_mmio: kernel_mapper is read only");
|
||||
return Err(SystemError::EAGAIN_OR_EWOULDBLOCK);
|
||||
let mut loop_i: u64 = 0;
|
||||
loop {
|
||||
if loop_i >= length {
|
||||
break;
|
||||
}
|
||||
// 获取要释放的vma的结构体
|
||||
let vma: *mut vm_area_struct = unsafe { vma_find(&mut initial_mm, vaddr + loop_i) };
|
||||
if vma == null_mut() {
|
||||
kdebug!(
|
||||
"mmio_release failed: vma not found. At address: {:?}, pid = {:?}",
|
||||
vaddr + loop_i,
|
||||
current_pcb().pid
|
||||
);
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
// 检查vma起始地址是否正确
|
||||
if unsafe { (*vma).vm_start != (vaddr + loop_i) } {
|
||||
kdebug!(
|
||||
"mmio_release failed: addr_start is not equal to current: {:?}. pid = {:?}",
|
||||
vaddr + loop_i,
|
||||
current_pcb().pid
|
||||
);
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
// 将vma对应空间归还
|
||||
match MMIO_POOL.give_back_block(unsafe { (*vma).vm_start }, unsafe {
|
||||
31 - ((*vma).vm_end - (*vma).vm_start).leading_zeros()
|
||||
}) {
|
||||
Ok(_) => {
|
||||
loop_i += unsafe { (*vma).vm_end - (*vma).vm_start };
|
||||
unsafe {
|
||||
vm_area_del(vma);
|
||||
vm_area_free(vma);
|
||||
}
|
||||
}
|
||||
Err(err) => {
|
||||
// vma对应空间没有成功归还的话,就不删除vma
|
||||
kdebug!(
|
||||
"mmio_release give_back failed: pid = {:?}",
|
||||
current_pcb().pid
|
||||
);
|
||||
return Err(err);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0..page_count {
|
||||
unsafe {
|
||||
kernel_mapper
|
||||
.as_mut()
|
||||
.unwrap()
|
||||
.unmap(vaddr + i * MMArch::PAGE_SIZE, true)
|
||||
};
|
||||
}
|
||||
|
||||
// todo: 归还到buddy
|
||||
|
||||
return Ok(0);
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief mmio伙伴系统内部的地址区域结构体
|
||||
#[derive(Debug, Clone)]
|
||||
struct MmioBuddyAddrRegion {
|
||||
vaddr: VirtAddr,
|
||||
pub struct MmioBuddyAddrRegion {
|
||||
vaddr: u64,
|
||||
}
|
||||
impl MmioBuddyAddrRegion {
|
||||
pub fn new(vaddr: VirtAddr) -> Self {
|
||||
return MmioBuddyAddrRegion { vaddr };
|
||||
pub fn new() -> Self {
|
||||
return MmioBuddyAddrRegion {
|
||||
..Default::default()
|
||||
};
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn vaddr(&self) -> VirtAddr {
|
||||
return self.vaddr;
|
||||
}
|
||||
impl Default for MmioBuddyAddrRegion {
|
||||
fn default() -> Self {
|
||||
MmioBuddyAddrRegion {
|
||||
vaddr: Default::default(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 空闲页数组结构体
|
||||
#[derive(Debug)]
|
||||
pub struct MmioFreeRegionList {
|
||||
/// 存储mmio_buddy的地址链表
|
||||
list: LinkedList<MmioBuddyAddrRegion>,
|
||||
list: LinkedList<Box<MmioBuddyAddrRegion>>,
|
||||
/// 空闲块的数量
|
||||
num_free: i64,
|
||||
}
|
||||
@ -604,6 +652,25 @@ impl Default for MmioFreeRegionList {
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 初始化mmio的伙伴系统
|
||||
#[no_mangle]
|
||||
pub extern "C" fn __mmio_buddy_init() {
|
||||
// 创建一堆1GB的地址块
|
||||
let cnt_1g_blocks: u32 = ((MMIO_TOP - MMIO_BASE) / PAGE_1G_SIZE as i64) as u32;
|
||||
let mut vaddr_base: u64 = MMIO_BASE as u64;
|
||||
for _ in 0..cnt_1g_blocks {
|
||||
match MMIO_POOL.give_back_block(vaddr_base, PAGE_1G_SHIFT) {
|
||||
Ok(_) => {
|
||||
vaddr_base += PAGE_1G_SIZE as u64;
|
||||
}
|
||||
Err(_) => {
|
||||
kerror!("__mmio_buddy_init failed");
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 将内存对象大小的幂转换成内存池中的数组的下标
|
||||
///
|
||||
/// @param exp内存大小
|
||||
@ -614,15 +681,6 @@ fn exp2index(exp: u32) -> usize {
|
||||
return (exp - 12) as usize;
|
||||
}
|
||||
|
||||
pub fn mmio_init() {
|
||||
kdebug!("Initializing MMIO buddy memory pool...");
|
||||
// 初始化mmio内存池
|
||||
unsafe {
|
||||
__MMIO_POOL = Some(MmioBuddyMemPool::new());
|
||||
}
|
||||
|
||||
kinfo!("MMIO buddy memory pool init done");
|
||||
}
|
||||
/// @brief 创建一块mmio区域,并将vma绑定到initial_mm
|
||||
///
|
||||
/// @param size mmio区域的大小(字节)
|
||||
@ -641,8 +699,7 @@ pub extern "C" fn mmio_create(
|
||||
res_vaddr: *mut u64,
|
||||
res_length: *mut u64,
|
||||
) -> i32 {
|
||||
// kdebug!("mmio_create");
|
||||
if let Err(err) = mmio_pool().create_mmio(size as usize, vm_flags, res_vaddr, res_length) {
|
||||
if let Err(err) = MMIO_POOL.create_mmio(size, vm_flags, res_vaddr, res_length) {
|
||||
return err.to_posix_errno();
|
||||
} else {
|
||||
return 0;
|
||||
@ -660,7 +717,9 @@ pub extern "C" fn mmio_create(
|
||||
/// @return Err(i32) 失败返回错误码
|
||||
#[no_mangle]
|
||||
pub extern "C" fn mmio_release(vaddr: u64, length: u64) -> i32 {
|
||||
return mmio_pool()
|
||||
.release_mmio(VirtAddr::new(vaddr as usize), length as usize)
|
||||
.unwrap_or_else(|err| err.to_posix_errno());
|
||||
if let Err(err) = MMIO_POOL.release_mmio(vaddr, length) {
|
||||
return err.to_posix_errno();
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
@ -1,63 +1,9 @@
|
||||
use alloc::sync::Arc;
|
||||
|
||||
use crate::{
|
||||
arch::MMArch,
|
||||
include::bindings::bindings::{process_control_block, PAGE_OFFSET},
|
||||
syscall::SystemError,
|
||||
};
|
||||
|
||||
use core::{
|
||||
cmp,
|
||||
fmt::Debug,
|
||||
intrinsics::unlikely,
|
||||
ops::{Add, AddAssign, Sub, SubAssign},
|
||||
ptr,
|
||||
sync::atomic::{AtomicBool, Ordering},
|
||||
};
|
||||
|
||||
use self::{
|
||||
allocator::page_frame::{VirtPageFrame, VirtPageFrameIter},
|
||||
page::round_up_to_page_size,
|
||||
ucontext::{AddressSpace, UserMapper},
|
||||
};
|
||||
use crate::include::bindings::bindings::{mm_struct, process_control_block, PAGE_OFFSET};
|
||||
|
||||
pub mod allocator;
|
||||
pub mod c_adapter;
|
||||
pub mod gfp;
|
||||
pub mod kernel_mapper;
|
||||
pub mod mmio_buddy;
|
||||
pub mod no_init;
|
||||
pub mod page;
|
||||
pub mod syscall;
|
||||
pub mod ucontext;
|
||||
|
||||
/// 内核INIT进程的用户地址空间结构体(仅在process_init中初始化)
|
||||
static mut __INITIAL_PROCESS_ADDRESS_SPACE: Option<Arc<AddressSpace>> = None;
|
||||
|
||||
/// 获取内核INIT进程的用户地址空间结构体
|
||||
#[allow(non_snake_case)]
|
||||
#[inline(always)]
|
||||
pub fn INITIAL_PROCESS_ADDRESS_SPACE() -> Arc<AddressSpace> {
|
||||
unsafe {
|
||||
return __INITIAL_PROCESS_ADDRESS_SPACE
|
||||
.as_ref()
|
||||
.expect("INITIAL_PROCESS_ADDRESS_SPACE is null")
|
||||
.clone();
|
||||
}
|
||||
}
|
||||
|
||||
/// 设置内核INIT进程的用户地址空间结构体全局变量
|
||||
#[allow(non_snake_case)]
|
||||
pub unsafe fn set_INITIAL_PROCESS_ADDRESS_SPACE(address_space: Arc<AddressSpace>) {
|
||||
static INITIALIZED: AtomicBool = AtomicBool::new(false);
|
||||
if INITIALIZED
|
||||
.compare_exchange(false, true, Ordering::SeqCst, Ordering::Acquire)
|
||||
.is_err()
|
||||
{
|
||||
panic!("INITIAL_PROCESS_ADDRESS_SPACE is already initialized");
|
||||
}
|
||||
__INITIAL_PROCESS_ADDRESS_SPACE = Some(address_space);
|
||||
}
|
||||
|
||||
/// @brief 将内核空间的虚拟地址转换为物理地址
|
||||
#[inline(always)]
|
||||
@ -71,561 +17,10 @@ pub fn phys_2_virt(addr: usize) -> usize {
|
||||
addr + PAGE_OFFSET as usize
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd, Hash)]
|
||||
pub enum PageTableKind {
|
||||
/// 用户可访问的页表
|
||||
User,
|
||||
/// 内核页表
|
||||
Kernel,
|
||||
}
|
||||
|
||||
/// 物理内存地址
|
||||
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd, Hash)]
|
||||
#[repr(transparent)]
|
||||
pub struct PhysAddr(usize);
|
||||
|
||||
impl PhysAddr {
|
||||
#[inline(always)]
|
||||
pub const fn new(address: usize) -> Self {
|
||||
Self(address)
|
||||
}
|
||||
|
||||
/// @brief 获取物理地址的值
|
||||
#[inline(always)]
|
||||
pub fn data(&self) -> usize {
|
||||
self.0
|
||||
}
|
||||
|
||||
/// @brief 将物理地址加上一个偏移量
|
||||
#[inline(always)]
|
||||
pub fn add(self, offset: usize) -> Self {
|
||||
Self(self.0 + offset)
|
||||
}
|
||||
|
||||
/// @brief 判断物理地址是否按照指定要求对齐
|
||||
#[inline(always)]
|
||||
pub fn check_aligned(&self, align: usize) -> bool {
|
||||
return self.0 & (align - 1) == 0;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn is_null(&self) -> bool {
|
||||
return self.0 == 0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Debug for PhysAddr {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
||||
write!(f, "PhysAddr({:#x})", self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Add<usize> for PhysAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 + rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::AddAssign<usize> for PhysAddr {
|
||||
#[inline(always)]
|
||||
fn add_assign(&mut self, rhs: usize) {
|
||||
self.0 += rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Add<PhysAddr> for PhysAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, rhs: PhysAddr) -> Self::Output {
|
||||
return Self(self.0 + rhs.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::AddAssign<PhysAddr> for PhysAddr {
|
||||
#[inline(always)]
|
||||
fn add_assign(&mut self, rhs: PhysAddr) {
|
||||
self.0 += rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Sub<usize> for PhysAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 - rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::SubAssign<usize> for PhysAddr {
|
||||
#[inline(always)]
|
||||
fn sub_assign(&mut self, rhs: usize) {
|
||||
self.0 -= rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Sub<PhysAddr> for PhysAddr {
|
||||
type Output = usize;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, rhs: PhysAddr) -> Self::Output {
|
||||
return self.0 - rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::SubAssign<PhysAddr> for PhysAddr {
|
||||
#[inline(always)]
|
||||
fn sub_assign(&mut self, rhs: PhysAddr) {
|
||||
self.0 -= rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
/// 虚拟内存地址
|
||||
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd, Hash)]
|
||||
#[repr(transparent)]
|
||||
pub struct VirtAddr(usize);
|
||||
|
||||
impl VirtAddr {
|
||||
#[inline(always)]
|
||||
pub const fn new(address: usize) -> Self {
|
||||
return Self(address);
|
||||
}
|
||||
|
||||
/// @brief 获取虚拟地址的值
|
||||
#[inline(always)]
|
||||
pub fn data(&self) -> usize {
|
||||
return self.0;
|
||||
}
|
||||
|
||||
/// @brief 判断虚拟地址的类型
|
||||
#[inline(always)]
|
||||
pub fn kind(&self) -> PageTableKind {
|
||||
if self.check_user() {
|
||||
return PageTableKind::User;
|
||||
} else {
|
||||
return PageTableKind::Kernel;
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 判断虚拟地址是否按照指定要求对齐
|
||||
#[inline(always)]
|
||||
pub fn check_aligned(&self, align: usize) -> bool {
|
||||
return self.0 & (align - 1) == 0;
|
||||
}
|
||||
|
||||
/// @brief 判断虚拟地址是否在用户空间
|
||||
#[inline(always)]
|
||||
pub fn check_user(&self) -> bool {
|
||||
if self < &MMArch::USER_END_VADDR {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn as_ptr<T>(self) -> *mut T {
|
||||
return self.0 as *mut T;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn is_null(&self) -> bool {
|
||||
return self.0 == 0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<VirtAddr> for VirtAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, rhs: VirtAddr) -> Self::Output {
|
||||
return Self(self.0 + rhs.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<usize> for VirtAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 + rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<VirtAddr> for VirtAddr {
|
||||
type Output = usize;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, rhs: VirtAddr) -> Self::Output {
|
||||
return self.0 - rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<usize> for VirtAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 - rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign<usize> for VirtAddr {
|
||||
#[inline(always)]
|
||||
fn add_assign(&mut self, rhs: usize) {
|
||||
self.0 += rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign<VirtAddr> for VirtAddr {
|
||||
#[inline(always)]
|
||||
fn add_assign(&mut self, rhs: VirtAddr) {
|
||||
self.0 += rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign<usize> for VirtAddr {
|
||||
#[inline(always)]
|
||||
fn sub_assign(&mut self, rhs: usize) {
|
||||
self.0 -= rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign<VirtAddr> for VirtAddr {
|
||||
#[inline(always)]
|
||||
fn sub_assign(&mut self, rhs: VirtAddr) {
|
||||
self.0 -= rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Debug for VirtAddr {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
||||
write!(f, "VirtAddr({:#x})", self.0)
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 物理内存区域
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct PhysMemoryArea {
|
||||
/// 物理基地址
|
||||
pub base: PhysAddr,
|
||||
/// 该区域的物理内存大小
|
||||
pub size: usize,
|
||||
}
|
||||
|
||||
pub trait MemoryManagementArch: Clone + Copy + Debug {
|
||||
/// 页面大小的shift(假如页面4K,那么这个值就是12,因为2^12=4096)
|
||||
const PAGE_SHIFT: usize;
|
||||
/// 每个页表的页表项数目。(以2^n次幂来表示)假如有512个页表项,那么这个值就是9
|
||||
const PAGE_ENTRY_SHIFT: usize;
|
||||
/// 页表层级数量
|
||||
const PAGE_LEVELS: usize;
|
||||
|
||||
/// 页表项的有效位的index(假如页表项的第0-51位有效,那么这个值就是52)
|
||||
const ENTRY_ADDRESS_SHIFT: usize;
|
||||
/// 页面的页表项的默认值
|
||||
const ENTRY_FLAG_DEFAULT_PAGE: usize;
|
||||
/// 页表的页表项的默认值
|
||||
const ENTRY_FLAG_DEFAULT_TABLE: usize;
|
||||
/// 页表项的present位被置位之后的值
|
||||
const ENTRY_FLAG_PRESENT: usize;
|
||||
/// 页表项为read only时的值
|
||||
const ENTRY_FLAG_READONLY: usize;
|
||||
/// 页表项为可读写状态的值
|
||||
const ENTRY_FLAG_READWRITE: usize;
|
||||
/// 页面项标记页面为user page的值
|
||||
const ENTRY_FLAG_USER: usize;
|
||||
/// 页面项标记页面为write through的值
|
||||
const ENTRY_FLAG_WRITE_THROUGH: usize;
|
||||
/// 页面项标记页面为cache disable的值
|
||||
const ENTRY_FLAG_CACHE_DISABLE: usize;
|
||||
/// 标记当前页面不可执行的标志位(Execute disable)(也就是说,不能从这段内存里面获取处理器指令)
|
||||
const ENTRY_FLAG_NO_EXEC: usize;
|
||||
/// 标记当前页面可执行的标志位(Execute enable)
|
||||
const ENTRY_FLAG_EXEC: usize;
|
||||
|
||||
/// 虚拟地址与物理地址的偏移量
|
||||
const PHYS_OFFSET: usize;
|
||||
|
||||
/// 每个页面的大小
|
||||
const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
|
||||
/// 通过这个mask,获取地址的页内偏移量
|
||||
const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
|
||||
/// 页表项的地址、数据部分的shift。
|
||||
/// 打个比方,如果这个值为52,那么意味着页表项的[0, 52)位,用于表示地址以及其他的标志位
|
||||
const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
|
||||
/// 最大的虚拟地址(对于不同的架构,由于上述PAGE_ADDRESS_SHIFT可能包括了reserved bits, 事实上能表示的虚拟地址应该比这个值要小)
|
||||
const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
|
||||
/// 页表项的值与这个常量进行与运算,得到的结果是所填写的物理地址
|
||||
const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
|
||||
/// 每个页表项的大小
|
||||
const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
|
||||
/// 每个页表的页表项数目
|
||||
const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
|
||||
/// 该字段用于根据虚拟地址,获取该虚拟地址在对应的页表中是第几个页表项
|
||||
const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
|
||||
|
||||
const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
|
||||
|
||||
const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
|
||||
/// 该mask用于获取页表项中地址字段
|
||||
const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
|
||||
/// 这个mask用于获取页表项中的flags
|
||||
const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
|
||||
|
||||
/// 用户空间的最高地址
|
||||
const USER_END_VADDR: VirtAddr;
|
||||
/// 用户堆的起始地址
|
||||
const USER_BRK_START: VirtAddr;
|
||||
/// 用户栈起始地址(向下生长,不包含该值)
|
||||
const USER_STACK_START: VirtAddr;
|
||||
|
||||
/// @brief 用于初始化内存管理模块与架构相关的信息。
|
||||
/// 该函数应调用其他模块的接口,生成内存区域结构体,提供给BumpAllocator使用
|
||||
unsafe fn init() -> &'static [PhysMemoryArea];
|
||||
|
||||
/// @brief 读取指定虚拟地址的值,并假设它是类型T的指针
|
||||
#[inline(always)]
|
||||
unsafe fn read<T>(address: VirtAddr) -> T {
|
||||
return ptr::read(address.data() as *const T);
|
||||
}
|
||||
|
||||
/// @brief 将value写入到指定的虚拟地址
|
||||
#[inline(always)]
|
||||
unsafe fn write<T>(address: VirtAddr, value: T) {
|
||||
ptr::write(address.data() as *mut T, value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
|
||||
ptr::write_bytes(address.data() as *mut u8, value, count);
|
||||
}
|
||||
|
||||
/// @brief 刷新TLB中,关于指定虚拟地址的条目
|
||||
unsafe fn invalidate_page(address: VirtAddr);
|
||||
|
||||
/// @brief 刷新TLB中,所有的条目
|
||||
unsafe fn invalidate_all();
|
||||
|
||||
/// @brief 获取顶级页表的物理地址
|
||||
unsafe fn table(table_kind: PageTableKind) -> PhysAddr;
|
||||
|
||||
/// @brief 设置顶级页表的物理地址到处理器中
|
||||
unsafe fn set_table(table_kind: PageTableKind, table: PhysAddr);
|
||||
|
||||
/// @brief 将物理地址转换为虚拟地址.
|
||||
///
|
||||
/// @param phys 物理地址
|
||||
///
|
||||
/// @return 转换后的虚拟地址。如果转换失败,返回None
|
||||
#[inline(always)]
|
||||
unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
|
||||
if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
|
||||
return Some(VirtAddr::new(vaddr));
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
/// 将虚拟地址转换为物理地址
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `virt` 虚拟地址
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 转换后的物理地址。如果转换失败,返回None
|
||||
#[inline(always)]
|
||||
unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
|
||||
if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
|
||||
return Some(PhysAddr::new(paddr));
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 判断指定的虚拟地址是否正确(符合规范)
|
||||
fn virt_is_valid(virt: VirtAddr) -> bool;
|
||||
|
||||
/// 获取内存管理初始化时,创建的第一个内核页表的地址
|
||||
fn initial_page_table() -> PhysAddr;
|
||||
|
||||
/// 初始化新的usermapper,为用户进程创建页表
|
||||
fn setup_new_usermapper() -> Result<UserMapper, SystemError>;
|
||||
}
|
||||
|
||||
/// @brief 虚拟地址范围
|
||||
/// 该结构体用于表示一个虚拟地址范围,包括起始地址与大小
|
||||
///
|
||||
/// 请注意与VMA进行区分,该结构体被VMA所包含
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub struct VirtRegion {
|
||||
start: VirtAddr,
|
||||
size: usize,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl VirtRegion {
|
||||
/// # 创建一个新的虚拟地址范围
|
||||
pub fn new(start: VirtAddr, size: usize) -> Self {
|
||||
VirtRegion { start, size }
|
||||
}
|
||||
|
||||
/// 获取虚拟地址范围的起始地址
|
||||
#[inline(always)]
|
||||
pub fn start(&self) -> VirtAddr {
|
||||
self.start
|
||||
}
|
||||
|
||||
/// 获取虚拟地址范围的截止地址(不包括返回的地址)
|
||||
#[inline(always)]
|
||||
pub fn end(&self) -> VirtAddr {
|
||||
return self.start().add(self.size);
|
||||
}
|
||||
|
||||
/// # Create a new VirtRegion from a range [start, end)
|
||||
///
|
||||
/// If end <= start, return None
|
||||
pub fn between(start: VirtAddr, end: VirtAddr) -> Option<Self> {
|
||||
if unlikely(end.data() <= start.data()) {
|
||||
return None;
|
||||
}
|
||||
let size = end.data() - start.data();
|
||||
return Some(VirtRegion::new(start, size));
|
||||
}
|
||||
|
||||
/// # 取两个虚拟地址范围的交集
|
||||
///
|
||||
/// 如果两个虚拟地址范围没有交集,返回None
|
||||
pub fn intersect(&self, other: &VirtRegion) -> Option<VirtRegion> {
|
||||
let start = self.start.max(other.start);
|
||||
let end = self.end().min(other.end());
|
||||
return VirtRegion::between(start, end);
|
||||
}
|
||||
|
||||
/// 设置虚拟地址范围的起始地址
|
||||
#[inline(always)]
|
||||
pub fn set_start(&mut self, start: VirtAddr) {
|
||||
self.start = start;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn size(&self) -> usize {
|
||||
self.size
|
||||
}
|
||||
|
||||
/// 设置虚拟地址范围的大小
|
||||
#[inline(always)]
|
||||
pub fn set_size(&mut self, size: usize) {
|
||||
self.size = size;
|
||||
}
|
||||
|
||||
/// 判断虚拟地址范围是否为空
|
||||
#[inline(always)]
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.size == 0
|
||||
}
|
||||
|
||||
/// 将虚拟地址区域的大小向上对齐到页大小
|
||||
#[inline(always)]
|
||||
pub fn round_up_size_to_page(self) -> Self {
|
||||
return VirtRegion::new(self.start, round_up_to_page_size(self.size));
|
||||
}
|
||||
|
||||
/// 判断两个虚拟地址范围是否由于具有交集而导致冲突
|
||||
#[inline(always)]
|
||||
pub fn collide(&self, other: &VirtRegion) -> bool {
|
||||
return self.intersect(other).is_some();
|
||||
}
|
||||
|
||||
pub fn iter_pages(&self) -> VirtPageFrameIter {
|
||||
return VirtPageFrame::iter_range(
|
||||
VirtPageFrame::new(self.start),
|
||||
VirtPageFrame::new(self.end()),
|
||||
);
|
||||
}
|
||||
|
||||
/// 获取[self.start(), region.start())的虚拟地址范围
|
||||
///
|
||||
/// 如果self.start() >= region.start(),返回None
|
||||
pub fn before(self, region: &VirtRegion) -> Option<Self> {
|
||||
return Self::between(self.start(), region.start());
|
||||
}
|
||||
|
||||
/// 获取[region.end(),self.end())的虚拟地址范围
|
||||
///
|
||||
/// 如果 self.end() >= region.end() ,返回None
|
||||
pub fn after(self, region: &VirtRegion) -> Option<Self> {
|
||||
// if self.end() > region.end() none
|
||||
return Self::between(region.end(), self.end());
|
||||
}
|
||||
|
||||
/// 把当前虚拟地址范围内的某个虚拟地址,转换为另一个虚拟地址范围内的虚拟地址
|
||||
///
|
||||
/// 如果vaddr不在当前虚拟地址范围内,返回None
|
||||
///
|
||||
/// 如果vaddr在当前虚拟地址范围内,返回vaddr在new_base中的虚拟地址
|
||||
pub fn rebase(self, vaddr: VirtAddr, new_base: &VirtRegion) -> Option<VirtAddr> {
|
||||
if !self.contains(vaddr) {
|
||||
return None;
|
||||
}
|
||||
let offset = vaddr.data() - self.start().data();
|
||||
let new_start = new_base.start().data() + offset;
|
||||
return Some(VirtAddr::new(new_start));
|
||||
}
|
||||
|
||||
/// 判断虚拟地址范围是否包含指定的虚拟地址
|
||||
pub fn contains(&self, addr: VirtAddr) -> bool {
|
||||
return self.start() <= addr && addr < self.end();
|
||||
}
|
||||
|
||||
/// 创建当前虚拟地址范围的页面迭代器
|
||||
pub fn pages(&self) -> VirtPageFrameIter {
|
||||
return VirtPageFrame::iter_range(
|
||||
VirtPageFrame::new(self.start()),
|
||||
VirtPageFrame::new(self.end()),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for VirtRegion {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
|
||||
return self.start.partial_cmp(&other.start);
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for VirtRegion {
|
||||
fn cmp(&self, other: &Self) -> cmp::Ordering {
|
||||
return self.start.cmp(&other.start);
|
||||
}
|
||||
}
|
||||
|
||||
/// ## 判断虚拟地址是否超出了用户空间
|
||||
///
|
||||
/// 如果虚拟地址超出了用户空间,返回Err(SystemError::EFAULT).
|
||||
/// 如果end < start,返回Err(SystemError::EOVERFLOW)
|
||||
///
|
||||
/// 否则返回Ok(())
|
||||
pub fn verify_area(addr: VirtAddr, size: usize) -> Result<(), SystemError> {
|
||||
let end = addr.add(size);
|
||||
if unlikely(end.data() < addr.data()) {
|
||||
return Err(SystemError::EOVERFLOW);
|
||||
}
|
||||
|
||||
if !addr.check_user() || !end.check_user() {
|
||||
return Err(SystemError::EFAULT);
|
||||
}
|
||||
|
||||
return Ok(());
|
||||
}
|
||||
// ====== 重构内存管理、进程管理后,请删除这几行 BEGIN ======
|
||||
// ====== 重构内存管理后,请删除18-24行 ======
|
||||
//BUG pcb问题
|
||||
unsafe impl Send for process_control_block {}
|
||||
unsafe impl Sync for process_control_block {}
|
||||
|
||||
// ====== 重构内存管理后,请删除这几行 END =======
|
||||
unsafe impl Send for mm_struct {}
|
||||
unsafe impl Sync for mm_struct {}
|
||||
|
@ -1,79 +0,0 @@
|
||||
//! 该文件用于系统启动早期,内存管理器初始化之前,提供一些简单的内存映射功能
|
||||
//!
|
||||
//! 这里假设在内核引导文件中,已经填写了前100M的内存映射关系,因此这里不需要任何动态分配。
|
||||
//!
|
||||
//! 映射关系为:
|
||||
//!
|
||||
//! 虚拟地址 0-100M与虚拟地址 0x8000_0000_0000 - 0x8000_0640_0000 之间具有重映射关系。
|
||||
//! 也就是说,他们的第二级页表在最顶级页表中,占用了第0和第256个页表项。
|
||||
//!
|
||||
|
||||
use crate::mm::{MMArch, MemoryManagementArch, PhysAddr};
|
||||
use core::marker::PhantomData;
|
||||
|
||||
use super::{
|
||||
allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage},
|
||||
page::PageFlags,
|
||||
PageTableKind, VirtAddr,
|
||||
};
|
||||
|
||||
/// 伪分配器
|
||||
struct PseudoAllocator<MMA> {
|
||||
phantom: PhantomData<MMA>,
|
||||
}
|
||||
|
||||
impl<MMA: MemoryManagementArch> PseudoAllocator<MMA> {
|
||||
pub const fn new() -> Self {
|
||||
Self {
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// 为NoInitAllocator实现FrameAllocator
|
||||
impl<MMA: MemoryManagementArch> FrameAllocator for PseudoAllocator<MMA> {
|
||||
unsafe fn allocate(&mut self, _count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
panic!("NoInitAllocator can't allocate page frame");
|
||||
}
|
||||
|
||||
unsafe fn free(&mut self, _address: PhysAddr, _count: PageFrameCount) {
|
||||
panic!("NoInitAllocator can't free page frame");
|
||||
}
|
||||
/// @brief: 获取内存区域页帧的使用情况
|
||||
/// @param self
|
||||
/// @return 页帧的使用情况
|
||||
unsafe fn usage(&self) -> PageFrameUsage {
|
||||
panic!("NoInitAllocator can't get page frame usage");
|
||||
}
|
||||
}
|
||||
|
||||
/// Use pseudo mapper to map physical memory to virtual memory.
|
||||
///
|
||||
/// ## Safety
|
||||
///
|
||||
/// 调用该函数时,必须保证内存管理器尚未初始化。否则将导致未定义的行为
|
||||
///
|
||||
/// 并且,内核引导文件必须以4K页为粒度,填写了前100M的内存映射关系。(具体以本文件开头的注释为准)
|
||||
pub unsafe fn pseudo_map_phys(vaddr: VirtAddr, paddr: PhysAddr, count: PageFrameCount) {
|
||||
assert!(vaddr.check_aligned(MMArch::PAGE_SIZE));
|
||||
assert!(paddr.check_aligned(MMArch::PAGE_SIZE));
|
||||
|
||||
let mut pseudo_allocator = PseudoAllocator::<MMArch>::new();
|
||||
|
||||
let mut mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
|
||||
PageTableKind::Kernel,
|
||||
MMArch::table(PageTableKind::Kernel),
|
||||
&mut pseudo_allocator,
|
||||
);
|
||||
|
||||
let flags: PageFlags<MMArch> = PageFlags::new().set_write(true).set_execute(true);
|
||||
|
||||
for i in 0..count.data() {
|
||||
let vaddr = vaddr + i * MMArch::PAGE_SIZE;
|
||||
let paddr = paddr + i * MMArch::PAGE_SIZE;
|
||||
let flusher = mapper.map_phys(vaddr, paddr, flags).unwrap();
|
||||
flusher.ignore();
|
||||
}
|
||||
|
||||
mapper.make_current();
|
||||
}
|
@ -1,924 +0,0 @@
|
||||
use core::{
|
||||
fmt::{self, Debug, Error, Formatter},
|
||||
marker::PhantomData,
|
||||
mem,
|
||||
ops::Add,
|
||||
sync::atomic::{compiler_fence, Ordering},
|
||||
};
|
||||
|
||||
use crate::{
|
||||
arch::{interrupt::ipi::send_ipi, MMArch},
|
||||
exception::ipi::{IpiKind, IpiTarget},
|
||||
kerror, kwarn,
|
||||
};
|
||||
|
||||
use super::{
|
||||
allocator::page_frame::FrameAllocator, syscall::ProtFlags, MemoryManagementArch, PageTableKind,
|
||||
PhysAddr, VirtAddr,
|
||||
};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct PageTable<Arch> {
|
||||
/// 当前页表表示的虚拟地址空间的起始地址
|
||||
base: VirtAddr,
|
||||
/// 当前页表所在的物理地址
|
||||
phys: PhysAddr,
|
||||
/// 当前页表的层级(请注意,最顶级页表的level为[Arch::PAGE_LEVELS - 1])
|
||||
level: usize,
|
||||
phantom: PhantomData<Arch>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl<Arch: MemoryManagementArch> PageTable<Arch> {
|
||||
pub unsafe fn new(base: VirtAddr, phys: PhysAddr, level: usize) -> Self {
|
||||
Self {
|
||||
base,
|
||||
phys,
|
||||
level,
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// 获取顶级页表
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - table_kind 页表类型
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 返回顶级页表
|
||||
pub unsafe fn top_level_table(table_kind: PageTableKind) -> Self {
|
||||
return Self::new(
|
||||
VirtAddr::new(0),
|
||||
Arch::table(table_kind),
|
||||
Arch::PAGE_LEVELS - 1,
|
||||
);
|
||||
}
|
||||
|
||||
/// 获取当前页表的物理地址
|
||||
#[inline(always)]
|
||||
pub fn phys(&self) -> PhysAddr {
|
||||
self.phys
|
||||
}
|
||||
|
||||
/// 当前页表表示的虚拟地址空间的起始地址
|
||||
#[inline(always)]
|
||||
pub fn base(&self) -> VirtAddr {
|
||||
self.base
|
||||
}
|
||||
|
||||
/// 获取当前页表的层级
|
||||
#[inline(always)]
|
||||
pub fn level(&self) -> usize {
|
||||
self.level
|
||||
}
|
||||
|
||||
/// 获取当前页表自身所在的虚拟地址
|
||||
#[inline(always)]
|
||||
pub unsafe fn virt(&self) -> VirtAddr {
|
||||
return Arch::phys_2_virt(self.phys).unwrap();
|
||||
}
|
||||
|
||||
/// 获取第i个页表项所表示的虚拟内存空间的起始地址
|
||||
pub fn entry_base(&self, i: usize) -> Option<VirtAddr> {
|
||||
if i < Arch::PAGE_ENTRY_NUM {
|
||||
let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
|
||||
return Some(self.base.add(i << shift));
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
/// 获取当前页表的第i个页表项所在的虚拟地址(注意与entry_base进行区分)
|
||||
pub unsafe fn entry_virt(&self, i: usize) -> Option<VirtAddr> {
|
||||
if i < Arch::PAGE_ENTRY_NUM {
|
||||
return Some(self.virt().add(i * Arch::PAGE_ENTRY_SIZE));
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
/// 获取当前页表的第i个页表项
|
||||
pub unsafe fn entry(&self, i: usize) -> Option<PageEntry<Arch>> {
|
||||
let entry_virt = self.entry_virt(i)?;
|
||||
return Some(PageEntry::new(Arch::read::<usize>(entry_virt)));
|
||||
}
|
||||
|
||||
/// 设置当前页表的第i个页表项
|
||||
pub unsafe fn set_entry(&self, i: usize, entry: PageEntry<Arch>) -> Option<()> {
|
||||
let entry_virt = self.entry_virt(i)?;
|
||||
Arch::write::<usize>(entry_virt, entry.data());
|
||||
return Some(());
|
||||
}
|
||||
|
||||
/// 判断当前页表的第i个页表项是否已经填写了值
|
||||
///
|
||||
/// ## 参数
|
||||
/// - Some(true) 如果已经填写了值
|
||||
/// - Some(false) 如果未填写值
|
||||
/// - None 如果i超出了页表项的范围
|
||||
pub fn entry_mapped(&self, i: usize) -> Option<bool> {
|
||||
let etv = unsafe { self.entry_virt(i) }?;
|
||||
if unsafe { Arch::read::<usize>(etv) } != 0 {
|
||||
return Some(true);
|
||||
} else {
|
||||
return Some(false);
|
||||
}
|
||||
}
|
||||
|
||||
/// 根据虚拟地址,获取对应的页表项在页表中的下标
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - addr: 虚拟地址
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 页表项在页表中的下标。如果addr不在当前页表所表示的虚拟地址空间中,则返回None
|
||||
pub unsafe fn index_of(&self, addr: VirtAddr) -> Option<usize> {
|
||||
let addr = VirtAddr::new(addr.data() & Arch::PAGE_ADDRESS_MASK);
|
||||
let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
|
||||
|
||||
let mask = (MMArch::PAGE_ENTRY_NUM << shift) - 1;
|
||||
if addr < self.base || addr >= self.base.add(mask) {
|
||||
return None;
|
||||
} else {
|
||||
return Some((addr.data() >> shift) & MMArch::PAGE_ENTRY_MASK);
|
||||
}
|
||||
}
|
||||
|
||||
/// 获取第i个页表项指向的下一级页表
|
||||
pub unsafe fn next_level_table(&self, index: usize) -> Option<Self> {
|
||||
if self.level == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
// 返回下一级页表
|
||||
return Some(PageTable::new(
|
||||
self.entry_base(index)?,
|
||||
self.entry(index)?.address().ok()?,
|
||||
self.level - 1,
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
/// 页表项
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct PageEntry<Arch> {
|
||||
data: usize,
|
||||
phantom: PhantomData<Arch>,
|
||||
}
|
||||
|
||||
impl<Arch> Debug for PageEntry<Arch> {
|
||||
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
||||
f.write_fmt(format_args!("PageEntry({:#x})", self.data))
|
||||
}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> PageEntry<Arch> {
|
||||
#[inline(always)]
|
||||
pub fn new(data: usize) -> Self {
|
||||
Self {
|
||||
data,
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn data(&self) -> usize {
|
||||
self.data
|
||||
}
|
||||
|
||||
/// 获取当前页表项指向的物理地址
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// - Ok(PhysAddr) 如果当前页面存在于物理内存中, 返回物理地址
|
||||
/// - Err(PhysAddr) 如果当前页表项不存在, 返回物理地址
|
||||
#[inline(always)]
|
||||
pub fn address(&self) -> Result<PhysAddr, PhysAddr> {
|
||||
let paddr = PhysAddr::new(self.data & Arch::PAGE_ADDRESS_MASK);
|
||||
|
||||
if self.present() {
|
||||
Ok(paddr)
|
||||
} else {
|
||||
Err(paddr)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn flags(&self) -> PageFlags<Arch> {
|
||||
unsafe { PageFlags::from_data(self.data & Arch::ENTRY_FLAGS_MASK) }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_flags(&mut self, flags: PageFlags<Arch>) {
|
||||
self.data = (self.data & !Arch::ENTRY_FLAGS_MASK) | flags.data();
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn present(&self) -> bool {
|
||||
return self.data & Arch::ENTRY_FLAG_PRESENT != 0;
|
||||
}
|
||||
}
|
||||
|
||||
/// 页表项的标志位
|
||||
#[derive(Copy, Clone, Hash)]
|
||||
pub struct PageFlags<Arch> {
|
||||
data: usize,
|
||||
phantom: PhantomData<Arch>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl<Arch: MemoryManagementArch> PageFlags<Arch> {
|
||||
#[inline(always)]
|
||||
pub fn new() -> Self {
|
||||
let mut r = unsafe {
|
||||
Self::from_data(
|
||||
Arch::ENTRY_FLAG_DEFAULT_PAGE
|
||||
| Arch::ENTRY_FLAG_READONLY
|
||||
| Arch::ENTRY_FLAG_NO_EXEC,
|
||||
)
|
||||
};
|
||||
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
{
|
||||
if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
|
||||
r = r.set_execute(true);
|
||||
}
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
/// 根据ProtFlags生成PageFlags
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - prot_flags: 页的保护标志
|
||||
/// - user: 用户空间是否可访问
|
||||
pub fn from_prot_flags(prot_flags: ProtFlags, user: bool) -> PageFlags<Arch> {
|
||||
let flags: PageFlags<Arch> = PageFlags::new()
|
||||
.set_user(user)
|
||||
.set_execute(prot_flags.contains(ProtFlags::PROT_EXEC))
|
||||
.set_write(prot_flags.contains(ProtFlags::PROT_WRITE));
|
||||
|
||||
return flags;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn data(&self) -> usize {
|
||||
self.data
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub const unsafe fn from_data(data: usize) -> Self {
|
||||
return Self {
|
||||
data: data,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
}
|
||||
|
||||
/// 为新页表的页表项设置默认值
|
||||
///
|
||||
/// 默认值为:
|
||||
/// - present
|
||||
/// - read only
|
||||
/// - kernel space
|
||||
/// - no exec
|
||||
#[inline(always)]
|
||||
pub fn new_page_table(user: bool) -> Self {
|
||||
return unsafe {
|
||||
let r = Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE | Arch::ENTRY_FLAG_READWRITE);
|
||||
if user {
|
||||
r.set_user(true)
|
||||
} else {
|
||||
r
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// 取得当前页表项的所有权,更新当前页表项的标志位,并返回更新后的页表项。
|
||||
///
|
||||
/// ## 参数
|
||||
/// - flag 要更新的标志位的值
|
||||
/// - value 如果为true,那么将flag对应的位设置为1,否则设置为0
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 更新后的页表项
|
||||
#[inline(always)]
|
||||
#[must_use]
|
||||
pub fn update_flags(mut self, flag: usize, value: bool) -> Self {
|
||||
if value {
|
||||
self.data |= flag;
|
||||
} else {
|
||||
self.data &= !flag;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
/// 判断当前页表项是否存在指定的flag(只有全部flag都存在才返回true)
|
||||
#[inline(always)]
|
||||
pub fn has_flag(&self, flag: usize) -> bool {
|
||||
return self.data & flag == flag;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn present(&self) -> bool {
|
||||
return self.has_flag(Arch::ENTRY_FLAG_PRESENT);
|
||||
}
|
||||
|
||||
/// 设置当前页表项的权限
|
||||
///
|
||||
/// @param value 如果为true,那么将当前页表项的权限设置为用户态可访问
|
||||
#[must_use]
|
||||
#[inline(always)]
|
||||
pub fn set_user(self, value: bool) -> Self {
|
||||
return self.update_flags(Arch::ENTRY_FLAG_USER, value);
|
||||
}
|
||||
|
||||
/// 用户态是否可以访问当前页表项
|
||||
#[inline(always)]
|
||||
pub fn has_user(&self) -> bool {
|
||||
return self.has_flag(Arch::ENTRY_FLAG_USER);
|
||||
}
|
||||
|
||||
/// 设置当前页表项的可写性, 如果为true,那么将当前页表项的权限设置为可写, 否则设置为只读
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 更新后的页表项.
|
||||
///
|
||||
/// **请注意,**本函数会取得当前页表项的所有权,因此返回的页表项不是原来的页表项
|
||||
#[must_use]
|
||||
#[inline(always)]
|
||||
pub fn set_write(self, value: bool) -> Self {
|
||||
// 有的架构同时具有可写和不可写的标志位,因此需要同时更新
|
||||
return self
|
||||
.update_flags(Arch::ENTRY_FLAG_READONLY, !value)
|
||||
.update_flags(Arch::ENTRY_FLAG_READWRITE, value);
|
||||
}
|
||||
|
||||
/// 当前页表项是否可写
|
||||
#[inline(always)]
|
||||
pub fn has_write(&self) -> bool {
|
||||
// 有的架构同时具有可写和不可写的标志位,因此需要同时判断
|
||||
return self.data & (Arch::ENTRY_FLAG_READWRITE | Arch::ENTRY_FLAG_READONLY)
|
||||
== Arch::ENTRY_FLAG_READWRITE;
|
||||
}
|
||||
|
||||
/// 设置当前页表项的可执行性, 如果为true,那么将当前页表项的权限设置为可执行, 否则设置为不可执行
|
||||
#[must_use]
|
||||
#[inline(always)]
|
||||
pub fn set_execute(self, mut value: bool) -> Self {
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
{
|
||||
// 如果xd位被保留,那么将可执行性设置为true
|
||||
if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
|
||||
value = true;
|
||||
}
|
||||
}
|
||||
|
||||
// 有的架构同时具有可执行和不可执行的标志位,因此需要同时更新
|
||||
return self
|
||||
.update_flags(Arch::ENTRY_FLAG_NO_EXEC, !value)
|
||||
.update_flags(Arch::ENTRY_FLAG_EXEC, value);
|
||||
}
|
||||
|
||||
/// 当前页表项是否可执行
|
||||
#[inline(always)]
|
||||
pub fn has_execute(&self) -> bool {
|
||||
// 有的架构同时具有可执行和不可执行的标志位,因此需要同时判断
|
||||
return self.data & (Arch::ENTRY_FLAG_EXEC | Arch::ENTRY_FLAG_NO_EXEC)
|
||||
== Arch::ENTRY_FLAG_EXEC;
|
||||
}
|
||||
|
||||
/// 设置当前页表项的缓存策略
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - value: 如果为true,那么将当前页表项的缓存策略设置为不缓存。
|
||||
#[inline(always)]
|
||||
pub fn set_page_cache_disable(self, value: bool) -> Self {
|
||||
return self.update_flags(Arch::ENTRY_FLAG_CACHE_DISABLE, value);
|
||||
}
|
||||
|
||||
/// 获取当前页表项的缓存策略
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果当前页表项的缓存策略为不缓存,那么返回true,否则返回false。
|
||||
#[inline(always)]
|
||||
pub fn has_page_cache_disable(&self) -> bool {
|
||||
return self.has_flag(Arch::ENTRY_FLAG_CACHE_DISABLE);
|
||||
}
|
||||
|
||||
/// 设置当前页表项的写穿策略
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
|
||||
#[inline(always)]
|
||||
pub fn set_page_write_through(self, value: bool) -> Self {
|
||||
return self.update_flags(Arch::ENTRY_FLAG_WRITE_THROUGH, value);
|
||||
}
|
||||
|
||||
/// 获取当前页表项的写穿策略
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果当前页表项的写穿策略为写穿,那么返回true,否则返回false。
|
||||
#[inline(always)]
|
||||
pub fn has_page_write_through(&self) -> bool {
|
||||
return self.has_flag(Arch::ENTRY_FLAG_WRITE_THROUGH);
|
||||
}
|
||||
|
||||
/// MMIO内存的页表项标志
|
||||
#[inline(always)]
|
||||
pub fn mmio_flags() -> Self {
|
||||
return Self::new()
|
||||
.set_user(false)
|
||||
.set_write(true)
|
||||
.set_execute(true)
|
||||
.set_page_cache_disable(true)
|
||||
.set_page_write_through(true);
|
||||
}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> fmt::Debug for PageFlags<Arch> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("PageFlags")
|
||||
.field("bits", &format_args!("{:#0x}", self.data))
|
||||
.field("present", &self.present())
|
||||
.field("has_write", &self.has_write())
|
||||
.field("has_execute", &self.has_execute())
|
||||
.field("has_user", &self.has_user())
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
/// 页表映射器
|
||||
#[derive(Hash)]
|
||||
pub struct PageMapper<Arch, F> {
|
||||
/// 页表类型
|
||||
table_kind: PageTableKind,
|
||||
/// 根页表物理地址
|
||||
table_paddr: PhysAddr,
|
||||
/// 页分配器
|
||||
frame_allocator: F,
|
||||
phantom: PhantomData<fn() -> Arch>,
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch, F: FrameAllocator> PageMapper<Arch, F> {
|
||||
/// 创建新的页面映射器
|
||||
///
|
||||
/// ## 参数
|
||||
/// - table_kind 页表类型
|
||||
/// - table_paddr 根页表物理地址
|
||||
/// - allocator 页分配器
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 页面映射器
|
||||
pub unsafe fn new(table_kind: PageTableKind, table_paddr: PhysAddr, allocator: F) -> Self {
|
||||
return Self {
|
||||
table_kind,
|
||||
table_paddr,
|
||||
frame_allocator: allocator,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
}
|
||||
|
||||
/// 创建页表,并为这个页表创建页面映射器
|
||||
pub unsafe fn create(table_kind: PageTableKind, mut allocator: F) -> Option<Self> {
|
||||
let table_paddr = allocator.allocate_one()?;
|
||||
// 清空页表
|
||||
let table_vaddr = Arch::phys_2_virt(table_paddr)?;
|
||||
Arch::write_bytes(table_vaddr, 0, Arch::PAGE_SIZE);
|
||||
return Some(Self::new(table_kind, table_paddr, allocator));
|
||||
}
|
||||
|
||||
/// 获取当前页表的页面映射器
|
||||
#[inline(always)]
|
||||
pub unsafe fn current(table_kind: PageTableKind, allocator: F) -> Self {
|
||||
let table_paddr = Arch::table(table_kind);
|
||||
return Self::new(table_kind, table_paddr, allocator);
|
||||
}
|
||||
|
||||
/// 判断当前页表分配器所属的页表是否是当前页表
|
||||
#[inline(always)]
|
||||
pub fn is_current(&self) -> bool {
|
||||
return unsafe { self.table().phys() == Arch::table(self.table_kind) };
|
||||
}
|
||||
|
||||
/// 将当前页表分配器所属的页表设置为当前页表
|
||||
#[inline(always)]
|
||||
pub unsafe fn make_current(&self) {
|
||||
Arch::set_table(self.table_kind, self.table_paddr);
|
||||
}
|
||||
|
||||
/// 获取当前页表分配器所属的根页表的结构体
|
||||
#[inline(always)]
|
||||
pub fn table(&self) -> PageTable<Arch> {
|
||||
// 由于只能通过new方法创建PageMapper,因此这里假定table_paddr是有效的
|
||||
return unsafe {
|
||||
PageTable::new(VirtAddr::new(0), self.table_paddr, Arch::PAGE_LEVELS - 1)
|
||||
};
|
||||
}
|
||||
|
||||
/// 获取当前PageMapper所对应的页分配器实例的引用
|
||||
#[inline(always)]
|
||||
#[allow(dead_code)]
|
||||
pub fn allocator_ref(&self) -> &F {
|
||||
return &self.frame_allocator;
|
||||
}
|
||||
|
||||
/// 获取当前PageMapper所对应的页分配器实例的可变引用
|
||||
#[inline(always)]
|
||||
pub fn allocator_mut(&mut self) -> &mut F {
|
||||
return &mut self.frame_allocator;
|
||||
}
|
||||
|
||||
/// 从当前PageMapper的页分配器中分配一个物理页,并将其映射到指定的虚拟地址
|
||||
pub unsafe fn map(
|
||||
&mut self,
|
||||
virt: VirtAddr,
|
||||
flags: PageFlags<Arch>,
|
||||
) -> Option<PageFlush<Arch>> {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
let phys: PhysAddr = self.frame_allocator.allocate_one()?;
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
return self.map_phys(virt, phys, flags);
|
||||
}
|
||||
|
||||
/// 映射一个物理页到指定的虚拟地址
|
||||
pub unsafe fn map_phys(
|
||||
&mut self,
|
||||
virt: VirtAddr,
|
||||
phys: PhysAddr,
|
||||
flags: PageFlags<Arch>,
|
||||
) -> Option<PageFlush<Arch>> {
|
||||
// 验证虚拟地址和物理地址是否对齐
|
||||
if !(virt.check_aligned(Arch::PAGE_SIZE) && phys.check_aligned(Arch::PAGE_SIZE)) {
|
||||
kerror!(
|
||||
"Try to map unaligned page: virt={:?}, phys={:?}",
|
||||
virt,
|
||||
phys
|
||||
);
|
||||
return None;
|
||||
}
|
||||
let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
|
||||
|
||||
// TODO: 验证flags是否合法
|
||||
|
||||
// 创建页表项
|
||||
let entry = PageEntry::new(phys.data() | flags.data());
|
||||
let mut table = self.table();
|
||||
loop {
|
||||
let i = table.index_of(virt)?;
|
||||
assert!(i < Arch::PAGE_ENTRY_NUM);
|
||||
if table.level() == 0 {
|
||||
// todo: 检查是否已经映射
|
||||
// 现在不检查的原因是,刚刚启动系统时,内核会映射一些页。
|
||||
if table.entry_mapped(i)? == true {
|
||||
kwarn!("Page {:?} already mapped", virt);
|
||||
}
|
||||
// kdebug!("Mapping {:?} to {:?}, i = {i}, entry={:?}, flags={:?}", virt, phys, entry, flags);
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
table.set_entry(i, entry);
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
return Some(PageFlush::new(virt));
|
||||
} else {
|
||||
let next_table = table.next_level_table(i);
|
||||
if let Some(next_table) = next_table {
|
||||
table = next_table;
|
||||
// kdebug!("Mapping {:?} to next level table...", virt);
|
||||
} else {
|
||||
// kdebug!("Allocating next level table for {:?}..., i={i}", virt);
|
||||
// 分配下一级页表
|
||||
let frame = self.frame_allocator.allocate_one()?;
|
||||
// 清空这个页帧
|
||||
MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
|
||||
|
||||
// 设置页表项的flags
|
||||
// let flags = Arch::ENTRY_FLAG_READWRITE
|
||||
// | Arch::ENTRY_FLAG_DEFAULT_TABLE
|
||||
// | if virt.kind() == PageTableKind::User {
|
||||
// Arch::ENTRY_FLAG_USER
|
||||
// } else {
|
||||
// 0
|
||||
// };
|
||||
let flags: PageFlags<MMArch> =
|
||||
PageFlags::new_page_table(virt.kind() == PageTableKind::User);
|
||||
|
||||
// kdebug!("Flags: {:?}", flags);
|
||||
|
||||
// 把新分配的页表映射到当前页表
|
||||
table.set_entry(i, PageEntry::new(frame.data() | flags.data()));
|
||||
|
||||
// 获取新分配的页表
|
||||
table = table.next_level_table(i)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// 将物理地址映射到具有线性偏移量的虚拟地址
|
||||
#[allow(dead_code)]
|
||||
pub unsafe fn map_linearly(
|
||||
&mut self,
|
||||
phys: PhysAddr,
|
||||
flags: PageFlags<Arch>,
|
||||
) -> Option<(VirtAddr, PageFlush<Arch>)> {
|
||||
let virt: VirtAddr = Arch::phys_2_virt(phys)?;
|
||||
return self.map_phys(virt, phys, flags).map(|flush| (virt, flush));
|
||||
}
|
||||
|
||||
/// 修改虚拟地址的页表项的flags,并返回页表项刷新器
|
||||
///
|
||||
/// 请注意,需要在修改完flags后,调用刷新器的flush方法,才能使修改生效
|
||||
///
|
||||
/// ## 参数
|
||||
/// - virt 虚拟地址
|
||||
/// - flags 新的页表项的flags
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果修改成功,返回刷新器,否则返回None
|
||||
pub unsafe fn remap(
|
||||
&mut self,
|
||||
virt: VirtAddr,
|
||||
flags: PageFlags<Arch>,
|
||||
) -> Option<PageFlush<Arch>> {
|
||||
return self
|
||||
.visit(virt, |p1, i| {
|
||||
let mut entry = p1.entry(i)?;
|
||||
entry.set_flags(flags);
|
||||
p1.set_entry(i, entry);
|
||||
Some(PageFlush::new(virt))
|
||||
})
|
||||
.flatten();
|
||||
}
|
||||
|
||||
/// 根据虚拟地址,查找页表,获取对应的物理地址和页表项的flags
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - virt 虚拟地址
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果查找成功,返回物理地址和页表项的flags,否则返回None
|
||||
pub fn translate(&self, virt: VirtAddr) -> Option<(PhysAddr, PageFlags<Arch>)> {
|
||||
let entry: PageEntry<Arch> = self.visit(virt, |p1, i| unsafe { p1.entry(i) })??;
|
||||
let paddr = entry.address().ok()?;
|
||||
let flags = entry.flags();
|
||||
return Some((paddr, flags));
|
||||
}
|
||||
|
||||
/// 取消虚拟地址的映射,释放页面,并返回页表项刷新器
|
||||
///
|
||||
/// 请注意,需要在取消映射后,调用刷新器的flush方法,才能使修改生效
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - virt 虚拟地址
|
||||
/// - unmap_parents 是否在父页表内,取消空闲子页表的映射
|
||||
///
|
||||
/// ## 返回值
|
||||
/// 如果取消成功,返回刷新器,否则返回None
|
||||
pub unsafe fn unmap(&mut self, virt: VirtAddr, unmap_parents: bool) -> Option<PageFlush<Arch>> {
|
||||
let (paddr, _, flusher) = self.unmap_phys(virt, unmap_parents)?;
|
||||
self.frame_allocator.free_one(paddr);
|
||||
return Some(flusher);
|
||||
}
|
||||
|
||||
/// 取消虚拟地址的映射,并返回物理地址和页表项的flags
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - vaddr 虚拟地址
|
||||
/// - unmap_parents 是否在父页表内,取消空闲子页表的映射
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果取消成功,返回物理地址和页表项的flags,否则返回None
|
||||
pub unsafe fn unmap_phys(
|
||||
&mut self,
|
||||
virt: VirtAddr,
|
||||
unmap_parents: bool,
|
||||
) -> Option<(PhysAddr, PageFlags<Arch>, PageFlush<Arch>)> {
|
||||
if !virt.check_aligned(Arch::PAGE_SIZE) {
|
||||
kerror!("Try to unmap unaligned page: virt={:?}", virt);
|
||||
return None;
|
||||
}
|
||||
|
||||
let mut table = self.table();
|
||||
return unmap_phys_inner(virt, &mut table, unmap_parents, self.allocator_mut())
|
||||
.map(|(paddr, flags)| (paddr, flags, PageFlush::<Arch>::new(virt)));
|
||||
}
|
||||
|
||||
/// 在页表中,访问虚拟地址对应的页表项,并调用传入的函数F
|
||||
fn visit<T>(
|
||||
&self,
|
||||
virt: VirtAddr,
|
||||
f: impl FnOnce(&mut PageTable<Arch>, usize) -> T,
|
||||
) -> Option<T> {
|
||||
let mut table = self.table();
|
||||
unsafe {
|
||||
loop {
|
||||
let i = table.index_of(virt)?;
|
||||
if table.level() == 0 {
|
||||
return Some(f(&mut table, i));
|
||||
} else {
|
||||
table = table.next_level_table(i)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// 取消页面映射,返回被取消映射的页表项的:【物理地址】和【flags】
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - vaddr 虚拟地址
|
||||
/// - table 页表
|
||||
/// - unmap_parents 是否在父页表内,取消空闲子页表的映射
|
||||
/// - allocator 页面分配器(如果页表从这个分配器分配,那么在取消映射时,也需要归还到这个分配器内)
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果取消成功,返回被取消映射的页表项的:【物理地址】和【flags】,否则返回None
|
||||
unsafe fn unmap_phys_inner<Arch: MemoryManagementArch>(
|
||||
vaddr: VirtAddr,
|
||||
table: &mut PageTable<Arch>,
|
||||
unmap_parents: bool,
|
||||
allocator: &mut impl FrameAllocator,
|
||||
) -> Option<(PhysAddr, PageFlags<Arch>)> {
|
||||
// 获取页表项的索引
|
||||
let i = table.index_of(vaddr)?;
|
||||
|
||||
// 如果当前是最后一级页表,直接取消页面映射
|
||||
if table.level() == 0 {
|
||||
let entry = table.entry(i)?;
|
||||
table.set_entry(i, PageEntry::new(0));
|
||||
return Some((entry.address().ok()?, entry.flags()));
|
||||
}
|
||||
|
||||
let mut subtable = table.next_level_table(i)?;
|
||||
// 递归地取消映射
|
||||
let result = unmap_phys_inner(vaddr, &mut subtable, unmap_parents, allocator)?;
|
||||
|
||||
// TODO: This is a bad idea for architectures where the kernel mappings are done in the process tables,
|
||||
// as these mappings may become out of sync
|
||||
if unmap_parents {
|
||||
// 如果子页表已经没有映射的页面了,就取消子页表的映射
|
||||
|
||||
// 检查子页表中是否还有映射的页面
|
||||
let x = (0..Arch::PAGE_ENTRY_NUM)
|
||||
.map(|k| subtable.entry(k).expect("invalid page entry"))
|
||||
.any(|e| e.present());
|
||||
if !x {
|
||||
// 如果没有,就取消子页表的映射
|
||||
table.set_entry(i, PageEntry::new(0));
|
||||
// 释放子页表
|
||||
allocator.free_one(subtable.phys());
|
||||
}
|
||||
}
|
||||
|
||||
return Some(result);
|
||||
}
|
||||
|
||||
impl<Arch, F: Debug> Debug for PageMapper<Arch, F> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("PageMapper")
|
||||
.field("table_paddr", &self.table_paddr)
|
||||
.field("frame_allocator", &self.frame_allocator)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
/// 页表刷新器的trait
|
||||
pub trait Flusher<Arch> {
|
||||
/// 取消对指定的page flusher的刷新
|
||||
fn consume(&mut self, flush: PageFlush<Arch>);
|
||||
}
|
||||
|
||||
/// 用于刷新某个虚拟地址的刷新器。这个刷新器一经产生,就必须调用flush()方法,
|
||||
/// 否则会造成对页表的更改被忽略,这是不安全的
|
||||
#[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
|
||||
pub struct PageFlush<Arch> {
|
||||
virt: VirtAddr,
|
||||
phantom: PhantomData<Arch>,
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> PageFlush<Arch> {
|
||||
pub fn new(virt: VirtAddr) -> Self {
|
||||
return Self {
|
||||
virt,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn flush(self) {
|
||||
unsafe { Arch::invalidate_page(self.virt) };
|
||||
}
|
||||
|
||||
/// 忽略掉这个刷新器
|
||||
pub unsafe fn ignore(self) {
|
||||
mem::forget(self);
|
||||
}
|
||||
}
|
||||
|
||||
/// 用于刷新整个页表的刷新器。这个刷新器一经产生,就必须调用flush()方法,
|
||||
/// 否则会造成对页表的更改被忽略,这是不安全的
|
||||
#[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
|
||||
pub struct PageFlushAll<Arch: MemoryManagementArch> {
|
||||
phantom: PhantomData<fn() -> Arch>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl<Arch: MemoryManagementArch> PageFlushAll<Arch> {
|
||||
pub fn new() -> Self {
|
||||
return Self {
|
||||
phantom: PhantomData,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn flush(self) {
|
||||
unsafe { Arch::invalidate_all() };
|
||||
}
|
||||
|
||||
/// 忽略掉这个刷新器
|
||||
pub unsafe fn ignore(self) {
|
||||
mem::forget(self);
|
||||
}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> Flusher<Arch> for PageFlushAll<Arch> {
|
||||
/// 为page flush all 实现consume,消除对单个页面的刷新。(刷新整个页表了就不需要刷新单个页面了)
|
||||
fn consume(&mut self, flush: PageFlush<Arch>) {
|
||||
unsafe { flush.ignore() };
|
||||
}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch, T: Flusher<Arch> + ?Sized> Flusher<Arch> for &mut T {
|
||||
/// 允许一个flusher consume掉另一个flusher
|
||||
fn consume(&mut self, flush: PageFlush<Arch>) {
|
||||
<T as Flusher<Arch>>::consume(self, flush);
|
||||
}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> Flusher<Arch> for () {
|
||||
fn consume(&mut self, _flush: PageFlush<Arch>) {}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> Drop for PageFlushAll<Arch> {
|
||||
fn drop(&mut self) {
|
||||
unsafe {
|
||||
Arch::invalidate_all();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// 未在当前CPU上激活的页表的刷新器
|
||||
///
|
||||
/// 如果页表没有在当前cpu上激活,那么需要发送ipi到其他核心,尝试在其他核心上刷新页表
|
||||
///
|
||||
/// TODO: 这个方式很暴力,也许把它改成在指定的核心上刷新页表会更好。(可以测试一下开销)
|
||||
#[derive(Debug)]
|
||||
pub struct InactiveFlusher;
|
||||
|
||||
impl InactiveFlusher {
|
||||
pub fn new() -> Self {
|
||||
return Self {};
|
||||
}
|
||||
}
|
||||
|
||||
impl Flusher<MMArch> for InactiveFlusher {
|
||||
fn consume(&mut self, flush: PageFlush<MMArch>) {
|
||||
unsafe {
|
||||
flush.ignore();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for InactiveFlusher {
|
||||
fn drop(&mut self) {
|
||||
// 发送刷新页表的IPI
|
||||
send_ipi(IpiKind::FlushTLB, IpiTarget::Other);
|
||||
}
|
||||
}
|
||||
|
||||
/// # 把一个地址向下对齐到页大小
|
||||
pub fn round_down_to_page_size(addr: usize) -> usize {
|
||||
addr & !(MMArch::PAGE_SIZE - 1)
|
||||
}
|
||||
|
||||
/// # 把一个地址向上对齐到页大小
|
||||
pub fn round_up_to_page_size(addr: usize) -> usize {
|
||||
round_down_to_page_size(addr + MMArch::PAGE_SIZE - 1)
|
||||
}
|
713
kernel/src/mm/slab.c
Normal file
713
kernel/src/mm/slab.c
Normal file
@ -0,0 +1,713 @@
|
||||
#include "slab.h"
|
||||
#include <common/compiler.h>
|
||||
|
||||
struct slab kmalloc_cache_group[16] =
|
||||
{
|
||||
{32, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{64, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{128, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{256, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{512, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{1024, 0, 0, NULL, NULL, NULL, NULL}, // 1KB
|
||||
{2048, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{4096, 0, 0, NULL, NULL, NULL, NULL}, // 4KB
|
||||
{8192, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{16384, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{32768, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{65536, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{131072, 0, 0, NULL, NULL, NULL, NULL}, // 128KB
|
||||
{262144, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{524288, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{1048576, 0, 0, NULL, NULL, NULL, NULL}, // 1MB
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 创建一个内存池
|
||||
*
|
||||
* @param size 内存池容量大小
|
||||
* @param constructor 构造函数
|
||||
* @param destructor 析构函数
|
||||
* @param arg 参数
|
||||
* @return struct slab* 构建好的内存池对象
|
||||
*/
|
||||
struct slab *slab_create(ul size, void *(*constructor)(void *vaddr, ul arg), void *(*destructor)(void *vaddr, ul arg), ul arg)
|
||||
{
|
||||
struct slab *slab_pool = (struct slab *)kmalloc(sizeof(struct slab), 0);
|
||||
|
||||
// BUG
|
||||
if (slab_pool == NULL)
|
||||
{
|
||||
kBUG("slab_create()->kmalloc()->slab == NULL");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memset(slab_pool, 0, sizeof(struct slab));
|
||||
|
||||
slab_pool->size = SIZEOF_LONG_ALIGN(size);
|
||||
slab_pool->count_total_using = 0;
|
||||
slab_pool->count_total_free = 0;
|
||||
// 直接分配cache_pool_entry结构体,避免每次访问都要检测是否为NULL,提升效率
|
||||
slab_pool->cache_pool_entry = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
|
||||
|
||||
// BUG
|
||||
if (slab_pool->cache_pool_entry == NULL)
|
||||
{
|
||||
kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
|
||||
kfree(slab_pool);
|
||||
return NULL;
|
||||
}
|
||||
memset(slab_pool->cache_pool_entry, 0, sizeof(struct slab_obj));
|
||||
|
||||
// dma内存池设置为空
|
||||
slab_pool->cache_dma_pool_entry = NULL;
|
||||
|
||||
// 设置构造及析构函数
|
||||
slab_pool->constructor = constructor;
|
||||
slab_pool->destructor = destructor;
|
||||
|
||||
list_init(&slab_pool->cache_pool_entry->list);
|
||||
|
||||
// 分配属于内存池的内存页
|
||||
slab_pool->cache_pool_entry->page = alloc_pages(ZONE_NORMAL, 1, PAGE_KERNEL);
|
||||
|
||||
// BUG
|
||||
if (slab_pool->cache_pool_entry->page == NULL)
|
||||
{
|
||||
kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
|
||||
kfree(slab_pool->cache_pool_entry);
|
||||
kfree(slab_pool);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// page_init(slab_pool->cache_pool_entry->page, PAGE_KERNEL);
|
||||
|
||||
slab_pool->cache_pool_entry->count_using = 0;
|
||||
slab_pool->cache_pool_entry->count_free = PAGE_2M_SIZE / slab_pool->size;
|
||||
|
||||
slab_pool->count_total_free = slab_pool->cache_pool_entry->count_free;
|
||||
|
||||
slab_pool->cache_pool_entry->vaddr = phys_2_virt(slab_pool->cache_pool_entry->page->addr_phys);
|
||||
|
||||
// bitmap有多少有效位
|
||||
slab_pool->cache_pool_entry->bmp_count = slab_pool->cache_pool_entry->count_free;
|
||||
|
||||
// 计算位图所占的空间 占用多少byte(按unsigned long大小的上边缘对齐)
|
||||
slab_pool->cache_pool_entry->bmp_len = ((slab_pool->cache_pool_entry->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
|
||||
// 初始化位图
|
||||
slab_pool->cache_pool_entry->bmp = (ul *)kmalloc(slab_pool->cache_pool_entry->bmp_len, 0);
|
||||
|
||||
// BUG
|
||||
if (slab_pool->cache_pool_entry->bmp == NULL)
|
||||
{
|
||||
kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
|
||||
free_pages(slab_pool->cache_pool_entry->page, 1);
|
||||
kfree(slab_pool->cache_pool_entry);
|
||||
kfree(slab_pool);
|
||||
return NULL;
|
||||
}
|
||||
// 将位图清空
|
||||
memset(slab_pool->cache_pool_entry->bmp, 0, slab_pool->cache_pool_entry->bmp_len);
|
||||
|
||||
return slab_pool;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 销毁内存池
|
||||
* 只有当slab是空的时候才能销毁
|
||||
* @param slab_pool 要销毁的内存池
|
||||
* @return ul
|
||||
*
|
||||
*/
|
||||
ul slab_destroy(struct slab *slab_pool)
|
||||
{
|
||||
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
|
||||
if (slab_pool->count_total_using)
|
||||
{
|
||||
kBUG("slab_cache->count_total_using != 0");
|
||||
return ESLAB_NOTNULL;
|
||||
}
|
||||
|
||||
struct slab_obj *tmp_slab_obj = NULL;
|
||||
while (!list_empty(&slab_obj_ptr->list))
|
||||
{
|
||||
tmp_slab_obj = slab_obj_ptr;
|
||||
// 获取下一个slab_obj的起始地址
|
||||
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
|
||||
|
||||
list_del(&tmp_slab_obj->list);
|
||||
|
||||
kfree(tmp_slab_obj->bmp);
|
||||
|
||||
page_clean(tmp_slab_obj->page);
|
||||
|
||||
free_pages(tmp_slab_obj->page, 1);
|
||||
|
||||
kfree(tmp_slab_obj);
|
||||
}
|
||||
|
||||
kfree(slab_obj_ptr->bmp);
|
||||
page_clean(slab_obj_ptr->page);
|
||||
free_pages(slab_obj_ptr->page, 1);
|
||||
kfree(slab_obj_ptr);
|
||||
kfree(slab_pool);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 分配SLAB内存池中的内存对象
|
||||
*
|
||||
* @param slab_pool slab内存池
|
||||
* @param arg 传递给内存对象构造函数的参数
|
||||
* @return void* 内存空间的虚拟地址
|
||||
*/
|
||||
void *slab_malloc(struct slab *slab_pool, ul arg)
|
||||
{
|
||||
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
|
||||
struct slab_obj *tmp_slab_obj = NULL;
|
||||
|
||||
// slab内存池中已经没有空闲的内存对象,进行扩容
|
||||
if (slab_pool->count_total_free == 0)
|
||||
{
|
||||
tmp_slab_obj = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
|
||||
|
||||
// BUG
|
||||
if (tmp_slab_obj == NULL)
|
||||
{
|
||||
kBUG("slab_malloc()->kmalloc()->slab->tmp_slab_obj == NULL");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memset(tmp_slab_obj, 0, sizeof(struct slab_obj));
|
||||
list_init(&tmp_slab_obj->list);
|
||||
|
||||
tmp_slab_obj->page = alloc_pages(ZONE_NORMAL, 1, PAGE_KERNEL);
|
||||
|
||||
// BUG
|
||||
if (tmp_slab_obj->page == NULL)
|
||||
{
|
||||
kBUG("slab_malloc()->kmalloc()=>tmp_slab_obj->page == NULL");
|
||||
kfree(tmp_slab_obj);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
tmp_slab_obj->count_using = 0;
|
||||
tmp_slab_obj->count_free = PAGE_2M_SIZE / slab_pool->size;
|
||||
tmp_slab_obj->vaddr = phys_2_virt(tmp_slab_obj->page->addr_phys);
|
||||
tmp_slab_obj->bmp_count = tmp_slab_obj->count_free;
|
||||
// 计算位图所占的空间 占用多少byte(按unsigned long大小的上边缘对齐)
|
||||
tmp_slab_obj->bmp_len = ((tmp_slab_obj->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
|
||||
tmp_slab_obj->bmp = (ul *)kmalloc(tmp_slab_obj->bmp_len, 0);
|
||||
|
||||
// BUG
|
||||
if (tmp_slab_obj->bmp == NULL)
|
||||
{
|
||||
kBUG("slab_malloc()->kmalloc()=>tmp_slab_obj->bmp == NULL");
|
||||
free_pages(tmp_slab_obj->page, 1);
|
||||
kfree(tmp_slab_obj);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memset(tmp_slab_obj->bmp, 0, tmp_slab_obj->bmp_len);
|
||||
|
||||
list_add(&slab_pool->cache_pool_entry->list, &tmp_slab_obj->list);
|
||||
|
||||
slab_pool->count_total_free += tmp_slab_obj->count_free;
|
||||
|
||||
slab_obj_ptr = tmp_slab_obj;
|
||||
}
|
||||
|
||||
// 扩容完毕或无需扩容,开始分配内存对象
|
||||
int tmp_md;
|
||||
do
|
||||
{
|
||||
if (slab_obj_ptr->count_free == 0)
|
||||
{
|
||||
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
|
||||
{
|
||||
// 当前bmp对应的内存对象都已经被分配
|
||||
if (*(slab_obj_ptr->bmp + (i >> 6)) == 0xffffffffffffffffUL)
|
||||
{
|
||||
i += 63;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 第i个内存对象是空闲的
|
||||
tmp_md = i % 64;
|
||||
if ((*(slab_obj_ptr->bmp + (i >> 6)) & (1UL << tmp_md)) == 0)
|
||||
{
|
||||
// 置位bmp
|
||||
*(slab_obj_ptr->bmp + (i >> 6)) |= (1UL << tmp_md);
|
||||
|
||||
// 更新当前slab对象的计数器
|
||||
++(slab_obj_ptr->count_using);
|
||||
--(slab_obj_ptr->count_free);
|
||||
// 更新slab内存池的计数器
|
||||
++(slab_pool->count_total_using);
|
||||
--(slab_pool->count_total_free);
|
||||
|
||||
if (slab_pool->constructor != NULL)
|
||||
{
|
||||
// 返回内存对象指针(要求构造函数返回内存对象指针)
|
||||
return slab_pool->constructor((char *)slab_obj_ptr->vaddr + slab_pool->size * i, arg);
|
||||
}
|
||||
// 返回内存对象指针
|
||||
else
|
||||
return (void *)((char *)slab_obj_ptr->vaddr + slab_pool->size * i);
|
||||
}
|
||||
}
|
||||
|
||||
} while (slab_obj_ptr != slab_pool->cache_pool_entry);
|
||||
|
||||
// should not be here
|
||||
|
||||
kBUG("slab_malloc() ERROR: can't malloc");
|
||||
|
||||
// 释放内存
|
||||
if (tmp_slab_obj != NULL)
|
||||
{
|
||||
list_del(&tmp_slab_obj->list);
|
||||
kfree(tmp_slab_obj->bmp);
|
||||
page_clean(tmp_slab_obj->page);
|
||||
free_pages(tmp_slab_obj->page, 1);
|
||||
kfree(tmp_slab_obj);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 回收slab内存池中的对象
|
||||
*
|
||||
* @param slab_pool 对应的内存池
|
||||
* @param addr 内存对象的虚拟地址
|
||||
* @param arg 传递给虚构函数的参数
|
||||
* @return ul
|
||||
*/
|
||||
ul slab_free(struct slab *slab_pool, void *addr, ul arg)
|
||||
{
|
||||
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
|
||||
|
||||
do
|
||||
{
|
||||
// 虚拟地址不在当前内存池对象的管理范围内
|
||||
if (!(slab_obj_ptr->vaddr <= addr && addr <= (slab_obj_ptr->vaddr + PAGE_2M_SIZE)))
|
||||
{
|
||||
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
// 计算出给定内存对象是第几个
|
||||
int index = (addr - slab_obj_ptr->vaddr) / slab_pool->size;
|
||||
|
||||
// 复位位图中对应的位
|
||||
*(slab_obj_ptr->bmp + (index >> 6)) ^= (1UL << index % 64);
|
||||
|
||||
++(slab_obj_ptr->count_free);
|
||||
--(slab_obj_ptr->count_using);
|
||||
|
||||
++(slab_pool->count_total_free);
|
||||
--(slab_pool->count_total_using);
|
||||
|
||||
// 有对应的析构函数,调用析构函数
|
||||
if (slab_pool->destructor != NULL)
|
||||
slab_pool->destructor((char *)slab_obj_ptr->vaddr + slab_pool->size * index, arg);
|
||||
|
||||
// 当前内存对象池的正在使用的内存对象为0,且内存池的空闲对象大于当前对象池的2倍,则销毁当前对象池,以减轻系统内存压力
|
||||
if ((slab_obj_ptr->count_using == 0) && ((slab_pool->count_total_free >> 1) >= slab_obj_ptr->count_free) && (slab_obj_ptr != slab_pool->cache_pool_entry))
|
||||
{
|
||||
|
||||
list_del(&slab_obj_ptr->list);
|
||||
slab_pool->count_total_free -= slab_obj_ptr->count_free;
|
||||
|
||||
kfree(slab_obj_ptr->bmp);
|
||||
page_clean(slab_obj_ptr->page);
|
||||
free_pages(slab_obj_ptr->page, 1);
|
||||
|
||||
kfree(slab_obj_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
} while (slab_obj_ptr != slab_pool->cache_pool_entry);
|
||||
|
||||
kwarn("slab_free(): address not in current slab");
|
||||
return ENOT_IN_SLAB;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 初始化内存池组
|
||||
* 在初始化通用内存管理单元期间,尚无内存空间分配函数,需要我们手动为SLAB内存池指定存储空间
|
||||
* @return ul
|
||||
*/
|
||||
ul slab_init()
|
||||
{
|
||||
kinfo("Initializing SLAB...");
|
||||
// 将slab的内存池空间放置在mms的后方
|
||||
ul tmp_addr = memory_management_struct.end_of_struct;
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
io_mfence();
|
||||
spin_init(&kmalloc_cache_group[i].lock);
|
||||
// 将slab内存池对象的空间放置在mms的后面,并且预留4个unsigned long 的空间以防止内存越界
|
||||
kmalloc_cache_group[i].cache_pool_entry = (struct slab_obj *)memory_management_struct.end_of_struct;
|
||||
|
||||
memory_management_struct.end_of_struct += sizeof(struct slab_obj) + (sizeof(ul) << 2);
|
||||
|
||||
list_init(&kmalloc_cache_group[i].cache_pool_entry->list);
|
||||
|
||||
// 初始化内存池对象
|
||||
kmalloc_cache_group[i].cache_pool_entry->count_using = 0;
|
||||
kmalloc_cache_group[i].cache_pool_entry->count_free = PAGE_2M_SIZE / kmalloc_cache_group[i].size;
|
||||
kmalloc_cache_group[i].cache_pool_entry->bmp_len = (((kmalloc_cache_group[i].cache_pool_entry->count_free + sizeof(ul) * 8 - 1) >> 6) << 3);
|
||||
kmalloc_cache_group[i].cache_pool_entry->bmp_count = kmalloc_cache_group[i].cache_pool_entry->count_free;
|
||||
|
||||
// 在slab对象后方放置bmp
|
||||
kmalloc_cache_group[i].cache_pool_entry->bmp = (ul *)memory_management_struct.end_of_struct;
|
||||
|
||||
// bmp后方预留4个unsigned long的空间防止内存越界,且按照8byte进行对齐
|
||||
memory_management_struct.end_of_struct = (ul)(memory_management_struct.end_of_struct + kmalloc_cache_group[i].cache_pool_entry->bmp_len + (sizeof(ul) << 2)) & (~(sizeof(ul) - 1));
|
||||
io_mfence();
|
||||
// @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
|
||||
memset(kmalloc_cache_group[i].cache_pool_entry->bmp, 0xff, kmalloc_cache_group[i].cache_pool_entry->bmp_len);
|
||||
for (int j = 0; j < kmalloc_cache_group[i].cache_pool_entry->bmp_count; ++j)
|
||||
*(kmalloc_cache_group[i].cache_pool_entry->bmp + (j >> 6)) ^= 1UL << (j % 64);
|
||||
|
||||
kmalloc_cache_group[i].count_total_using = 0;
|
||||
kmalloc_cache_group[i].count_total_free = kmalloc_cache_group[i].cache_pool_entry->count_free;
|
||||
io_mfence();
|
||||
}
|
||||
|
||||
struct Page *page = NULL;
|
||||
|
||||
// 将上面初始化内存池组时,所占用的内存页进行初始化
|
||||
ul tmp_page_mms_end = virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT;
|
||||
|
||||
ul page_num = 0;
|
||||
for (int i = PAGE_2M_ALIGN(virt_2_phys(tmp_addr)) >> PAGE_2M_SHIFT; i <= tmp_page_mms_end; ++i)
|
||||
{
|
||||
|
||||
page = memory_management_struct.pages_struct + i;
|
||||
page_num = page->addr_phys >> PAGE_2M_SHIFT;
|
||||
*(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
|
||||
++page->zone->count_pages_using;
|
||||
io_mfence();
|
||||
--page->zone->count_pages_free;
|
||||
page_init(page, PAGE_KERNEL_INIT | PAGE_KERNEL | PAGE_PGT_MAPPED);
|
||||
}
|
||||
io_mfence();
|
||||
|
||||
// 为slab内存池对象分配内存空间
|
||||
ul *virt = NULL;
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
// 获取一个新的空页并添加到空页表,然后返回其虚拟地址
|
||||
virt = (ul *)((memory_management_struct.end_of_struct + PAGE_2M_SIZE * i + PAGE_2M_SIZE - 1) & PAGE_2M_MASK);
|
||||
|
||||
page = Virt_To_2M_Page(virt);
|
||||
|
||||
page_num = page->addr_phys >> PAGE_2M_SHIFT;
|
||||
|
||||
*(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
|
||||
|
||||
++page->zone->count_pages_using;
|
||||
io_mfence(); // 该位置必须加一个mfence,否则O3优化运行时会报错
|
||||
--page->zone->count_pages_free;
|
||||
page_init(page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
|
||||
|
||||
kmalloc_cache_group[i].cache_pool_entry->page = page;
|
||||
|
||||
kmalloc_cache_group[i].cache_pool_entry->vaddr = virt;
|
||||
}
|
||||
|
||||
kinfo("SLAB initialized successfully!");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 在kmalloc中创建slab_obj的函数(与slab_malloc()中的类似)
|
||||
*
|
||||
* @param size
|
||||
* @return struct slab_obj* 创建好的slab_obj
|
||||
*/
|
||||
|
||||
struct slab_obj *kmalloc_create_slab_obj(ul size)
|
||||
{
|
||||
struct Page *page = alloc_pages(ZONE_NORMAL, 1, 0);
|
||||
|
||||
// BUG
|
||||
if (page == NULL)
|
||||
{
|
||||
kBUG("kmalloc_create()->alloc_pages()=>page == NULL");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
page_init(page, PAGE_KERNEL);
|
||||
|
||||
ul *vaddr = NULL;
|
||||
ul struct_size = 0;
|
||||
struct slab_obj *slab_obj_ptr;
|
||||
|
||||
// 根据size大小,选择不同的分支来处理
|
||||
// 之所以选择512byte为分界点,是因为,此时bmp大小刚好为512byte。显而易见,选择过小的话会导致kmalloc函数与当前函数反复互相调用,最终导致栈溢出
|
||||
switch (size)
|
||||
{
|
||||
// ============ 对于size<=512byte的内存池对象,将slab_obj结构体和bmp放置在物理页的内部 ========
|
||||
// 由于这些对象的特征是,bmp占的空间大,而内存块的空间小,这样做的目的是避免再去申请一块内存来存储bmp,减少浪费。
|
||||
case 32:
|
||||
case 64:
|
||||
case 128:
|
||||
case 256:
|
||||
case 512:
|
||||
vaddr = phys_2_virt(page->addr_phys);
|
||||
// slab_obj结构体的大小 (本身的大小+bmp的大小)
|
||||
struct_size = sizeof(struct slab_obj) + PAGE_2M_SIZE / size / 8;
|
||||
// 将slab_obj放置到物理页的末尾
|
||||
slab_obj_ptr = (struct slab_obj *)((unsigned char *)vaddr + PAGE_2M_SIZE - struct_size);
|
||||
slab_obj_ptr->bmp = (void *)slab_obj_ptr + sizeof(struct slab_obj);
|
||||
|
||||
slab_obj_ptr->count_free = (PAGE_2M_SIZE - struct_size) / size;
|
||||
slab_obj_ptr->count_using = 0;
|
||||
slab_obj_ptr->bmp_count = slab_obj_ptr->count_free;
|
||||
slab_obj_ptr->vaddr = vaddr;
|
||||
slab_obj_ptr->page = page;
|
||||
|
||||
list_init(&slab_obj_ptr->list);
|
||||
|
||||
slab_obj_ptr->bmp_len = ((slab_obj_ptr->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
|
||||
|
||||
// @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
|
||||
memset(slab_obj_ptr->bmp, 0xff, slab_obj_ptr->bmp_len);
|
||||
|
||||
for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
|
||||
*(slab_obj_ptr->bmp + (i >> 6)) ^= 1UL << (i % 64);
|
||||
|
||||
break;
|
||||
// ================= 较大的size时,slab_obj和bmp不再放置于当前物理页内部 ============
|
||||
// 因为在这种情况下,bmp很短,继续放置在当前物理页内部则会造成可分配的对象少,加剧了内存空间的浪费
|
||||
case 1024: // 1KB
|
||||
case 2048:
|
||||
case 4096: // 4KB
|
||||
case 8192:
|
||||
case 16384:
|
||||
case 32768:
|
||||
case 65536:
|
||||
case 131072: // 128KB
|
||||
case 262144:
|
||||
case 524288:
|
||||
case 1048576: // 1MB
|
||||
slab_obj_ptr = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
|
||||
|
||||
slab_obj_ptr->count_free = PAGE_2M_SIZE / size;
|
||||
slab_obj_ptr->count_using = 0;
|
||||
slab_obj_ptr->bmp_count = slab_obj_ptr->count_free;
|
||||
|
||||
slab_obj_ptr->bmp_len = ((slab_obj_ptr->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
|
||||
|
||||
slab_obj_ptr->bmp = (ul *)kmalloc(slab_obj_ptr->bmp_len, 0);
|
||||
|
||||
// @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
|
||||
memset(slab_obj_ptr->bmp, 0xff, slab_obj_ptr->bmp_len);
|
||||
for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
|
||||
*(slab_obj_ptr->bmp + (i >> 6)) ^= 1UL << (i % 64);
|
||||
|
||||
slab_obj_ptr->vaddr = phys_2_virt(page->addr_phys);
|
||||
slab_obj_ptr->page = page;
|
||||
list_init(&slab_obj_ptr->list);
|
||||
break;
|
||||
// size 错误
|
||||
default:
|
||||
kerror("kamlloc_create(): Wrong size%d", size);
|
||||
free_pages(page, 1);
|
||||
return NULL;
|
||||
break;
|
||||
}
|
||||
|
||||
return slab_obj_ptr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 通用内存分配函数
|
||||
*
|
||||
* @param size 要分配的内存大小
|
||||
* @param gfp 内存的flag
|
||||
* @return void* 内核内存虚拟地址
|
||||
*/
|
||||
void *kmalloc(unsigned long size, gfp_t gfp)
|
||||
{
|
||||
void *result = NULL;
|
||||
if (size > 1048576)
|
||||
{
|
||||
kwarn("kmalloc(): Can't alloc such memory: %ld bytes, because it is too large.", size);
|
||||
return NULL;
|
||||
}
|
||||
int index;
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
if (kmalloc_cache_group[i].size >= size)
|
||||
{
|
||||
index = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// 对当前内存池加锁
|
||||
spin_lock(&kmalloc_cache_group[index].lock);
|
||||
|
||||
struct slab_obj *slab_obj_ptr = kmalloc_cache_group[index].cache_pool_entry;
|
||||
|
||||
// 内存池没有可用的内存对象,需要进行扩容
|
||||
if (unlikely(kmalloc_cache_group[index].count_total_free == 0))
|
||||
{
|
||||
// 创建slab_obj
|
||||
slab_obj_ptr = kmalloc_create_slab_obj(kmalloc_cache_group[index].size);
|
||||
|
||||
// BUG
|
||||
if (unlikely(slab_obj_ptr == NULL))
|
||||
{
|
||||
kBUG("kmalloc()->kmalloc_create_slab_obj()=>slab == NULL");
|
||||
goto failed;
|
||||
}
|
||||
|
||||
kmalloc_cache_group[index].count_total_free += slab_obj_ptr->count_free;
|
||||
list_add(&kmalloc_cache_group[index].cache_pool_entry->list, &slab_obj_ptr->list);
|
||||
}
|
||||
else // 内存对象充足
|
||||
{
|
||||
do
|
||||
{
|
||||
// 跳转到下一个内存池对象
|
||||
if (slab_obj_ptr->count_free == 0)
|
||||
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
|
||||
else
|
||||
break;
|
||||
} while (slab_obj_ptr != kmalloc_cache_group[index].cache_pool_entry);
|
||||
}
|
||||
// 寻找一块可用的内存对象
|
||||
int md;
|
||||
for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
|
||||
{
|
||||
|
||||
// 当前bmp全部被使用
|
||||
if (*(slab_obj_ptr->bmp + (i >> 6)) == 0xffffffffffffffffUL)
|
||||
{
|
||||
i += 63;
|
||||
continue;
|
||||
}
|
||||
md = i % 64;
|
||||
// 找到相应的内存对象
|
||||
if ((*(slab_obj_ptr->bmp + (i >> 6)) & (1UL << md)) == 0)
|
||||
{
|
||||
*(slab_obj_ptr->bmp + (i >> 6)) |= (1UL << md);
|
||||
++(slab_obj_ptr->count_using);
|
||||
--(slab_obj_ptr->count_free);
|
||||
|
||||
--kmalloc_cache_group[index].count_total_free;
|
||||
++kmalloc_cache_group[index].count_total_using;
|
||||
// 放锁
|
||||
spin_unlock(&kmalloc_cache_group[index].lock);
|
||||
// 返回内存对象
|
||||
result = (void *)((char *)slab_obj_ptr->vaddr + kmalloc_cache_group[index].size * i);
|
||||
goto done;
|
||||
}
|
||||
}
|
||||
goto failed;
|
||||
done:;
|
||||
if (gfp & __GFP_ZERO)
|
||||
memset(result, 0, size);
|
||||
return result;
|
||||
failed:;
|
||||
spin_unlock(&kmalloc_cache_group[index].lock);
|
||||
kerror("kmalloc(): Cannot alloc more memory: %d bytes", size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 通用内存释放函数
|
||||
*
|
||||
* @param address 要释放的内存线性地址
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long kfree(void *address)
|
||||
{
|
||||
if (unlikely(address == NULL))
|
||||
return 0;
|
||||
struct slab_obj *slab_obj_ptr = NULL;
|
||||
|
||||
// 将线性地址按照2M物理页对齐, 获得所在物理页的起始线性地址
|
||||
void *page_base_addr = (void *)((ul)address & PAGE_2M_MASK);
|
||||
|
||||
int index;
|
||||
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
slab_obj_ptr = kmalloc_cache_group[i].cache_pool_entry;
|
||||
|
||||
do
|
||||
{
|
||||
// 不属于当前slab_obj的管理范围
|
||||
if (likely(slab_obj_ptr->vaddr != page_base_addr))
|
||||
{
|
||||
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
|
||||
}
|
||||
else
|
||||
{
|
||||
// 对当前内存池加锁
|
||||
spin_lock(&kmalloc_cache_group[i].lock);
|
||||
// 计算地址属于哪一个内存对象
|
||||
index = (address - slab_obj_ptr->vaddr) / kmalloc_cache_group[i].size;
|
||||
|
||||
// 复位bmp
|
||||
*(slab_obj_ptr->bmp + (index >> 6)) ^= 1UL << (index % 64);
|
||||
|
||||
++(slab_obj_ptr->count_free);
|
||||
--(slab_obj_ptr->count_using);
|
||||
++kmalloc_cache_group[i].count_total_free;
|
||||
--kmalloc_cache_group[i].count_total_using;
|
||||
|
||||
// 回收空闲的slab_obj
|
||||
// 条件:当前slab_obj_ptr的使用为0、总空闲内存对象>=当前slab_obj的总对象的2倍 且当前slab_pool不为起始slab_obj
|
||||
if ((slab_obj_ptr->count_using == 0) && (kmalloc_cache_group[i].count_total_free >= ((slab_obj_ptr->bmp_count) << 1)) && (kmalloc_cache_group[i].cache_pool_entry != slab_obj_ptr))
|
||||
{
|
||||
switch (kmalloc_cache_group[i].size)
|
||||
{
|
||||
case 32:
|
||||
case 64:
|
||||
case 128:
|
||||
case 256:
|
||||
case 512:
|
||||
// 在这种情况下,slab_obj是被安放在page内部的
|
||||
list_del(&slab_obj_ptr->list);
|
||||
|
||||
kmalloc_cache_group[i].count_total_free -= slab_obj_ptr->bmp_count;
|
||||
page_clean(slab_obj_ptr->page);
|
||||
free_pages(slab_obj_ptr->page, 1);
|
||||
break;
|
||||
|
||||
default:
|
||||
// 在这种情况下,slab_obj是被安放在额外获取的内存对象中的
|
||||
list_del(&slab_obj_ptr->list);
|
||||
kmalloc_cache_group[i].count_total_free -= slab_obj_ptr->bmp_count;
|
||||
|
||||
kfree(slab_obj_ptr->bmp);
|
||||
|
||||
page_clean(slab_obj_ptr->page);
|
||||
free_pages(slab_obj_ptr->page, 1);
|
||||
|
||||
kfree(slab_obj_ptr);
|
||||
break;
|
||||
}
|
||||
}
|
||||
// 放锁
|
||||
spin_unlock(&kmalloc_cache_group[i].lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
} while (slab_obj_ptr != kmalloc_cache_group[i].cache_pool_entry);
|
||||
}
|
||||
kBUG("kfree(): Can't free memory. address=%#018lx", address);
|
||||
return ECANNOT_FREE_MEM;
|
||||
}
|
@ -1,6 +1,54 @@
|
||||
#pragma once
|
||||
|
||||
#include "mm.h"
|
||||
#include <common/glib.h>
|
||||
#include <common/printk.h>
|
||||
#include <common/kprint.h>
|
||||
#include <common/spinlock.h>
|
||||
|
||||
#define SIZEOF_LONG_ALIGN(size) ((size + sizeof(long) - 1) & ~(sizeof(long) - 1))
|
||||
#define SIZEOF_INT_ALIGN(size) ((size + sizeof(int) - 1) & ~(sizeof(int) - 1))
|
||||
|
||||
// SLAB存储池count_using不为空
|
||||
#define ESLAB_NOTNULL 101
|
||||
#define ENOT_IN_SLAB 102 // 地址不在当前slab内存池中
|
||||
#define ECANNOT_FREE_MEM 103 // 无法释放内存
|
||||
|
||||
struct slab_obj
|
||||
{
|
||||
struct List list;
|
||||
// 当前slab对象所使用的内存页
|
||||
struct Page *page;
|
||||
|
||||
ul count_using;
|
||||
ul count_free;
|
||||
|
||||
// 当前页面所在的线性地址
|
||||
void *vaddr;
|
||||
|
||||
// 位图
|
||||
ul bmp_len; // 位图的长度(字节)
|
||||
ul bmp_count; // 位图的有效位数
|
||||
ul *bmp;
|
||||
};
|
||||
|
||||
// slab内存池
|
||||
struct slab
|
||||
{
|
||||
ul size; // 单位:byte
|
||||
ul count_total_using;
|
||||
ul count_total_free;
|
||||
// 内存池对象
|
||||
struct slab_obj *cache_pool_entry;
|
||||
// dma内存池对象
|
||||
struct slab_obj *cache_dma_pool_entry;
|
||||
|
||||
spinlock_t lock; // 当前内存池的操作锁
|
||||
|
||||
// 内存池的构造函数和析构函数
|
||||
void *(*constructor)(void *vaddr, ul arg);
|
||||
void *(*destructor)(void *vaddr, ul arg);
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 通用内存分配函数
|
||||
@ -9,16 +57,19 @@
|
||||
* @param gfp 内存的flag
|
||||
* @return void* 分配得到的内存的指针
|
||||
*/
|
||||
extern void *kmalloc(unsigned long size, gfp_t gfp);
|
||||
void *kmalloc(unsigned long size, gfp_t gfp);
|
||||
|
||||
/**
|
||||
* @brief 从kmalloc申请一块内存,并将这块内存清空
|
||||
*
|
||||
*
|
||||
* @param size 要分配的内存大小
|
||||
* @param gfp 内存的flag
|
||||
* @return void* 分配得到的内存的指针
|
||||
*/
|
||||
extern void *kzalloc(size_t size, gfp_t gfp);
|
||||
static __always_inline void *kzalloc(size_t size, gfp_t gfp)
|
||||
{
|
||||
return kmalloc(size, gfp | __GFP_ZERO);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 通用内存释放函数
|
||||
@ -26,4 +77,58 @@ extern void *kzalloc(size_t size, gfp_t gfp);
|
||||
* @param address 要释放的内存地址
|
||||
* @return unsigned long
|
||||
*/
|
||||
extern unsigned long kfree(void *address);
|
||||
unsigned long kfree(void *address);
|
||||
|
||||
/**
|
||||
* @brief 创建一个内存池
|
||||
*
|
||||
* @param size 内存池容量大小
|
||||
* @param constructor 构造函数
|
||||
* @param destructor 析构函数
|
||||
* @param arg 参数
|
||||
* @return struct slab* 构建好的内存池对象
|
||||
*/
|
||||
struct slab *slab_create(ul size, void *(*constructor)(void *vaddr, ul arg), void *(*destructor)(void *vaddr, ul arg), ul arg);
|
||||
|
||||
/**
|
||||
* @brief 销毁内存池对象
|
||||
* 只有当slab对象是空的时候才能销毁
|
||||
* @param slab_pool 要销毁的内存池对象
|
||||
* @return ul
|
||||
*
|
||||
*/
|
||||
ul slab_destroy(struct slab *slab_pool);
|
||||
|
||||
/**
|
||||
* @brief 分配SLAB内存池中的内存对象
|
||||
*
|
||||
* @param slab_pool slab内存池
|
||||
* @param arg 传递给内存对象构造函数的参数
|
||||
* @return void* 内存空间的虚拟地址
|
||||
*/
|
||||
void *slab_malloc(struct slab *slab_pool, ul arg);
|
||||
|
||||
/**
|
||||
* @brief 回收slab内存池中的对象
|
||||
*
|
||||
* @param slab_pool 对应的内存池
|
||||
* @param addr 内存对象的虚拟地址
|
||||
* @param arg 传递给虚构函数的参数
|
||||
* @return ul
|
||||
*/
|
||||
ul slab_free(struct slab *slab_pool, void *addr, ul arg);
|
||||
|
||||
/**
|
||||
* @brief 在kmalloc中创建slab_obj的函数(与slab_malloc()类似)
|
||||
*
|
||||
* @param size
|
||||
* @return struct slab_obj* 创建好的slab_obj
|
||||
*/
|
||||
struct slab_obj *kmalloc_create_slab_obj(ul size);
|
||||
|
||||
/**
|
||||
* @brief 初始化内存池组
|
||||
* 在初始化通用内存管理单元期间,尚无内存空间分配函数,需要我们手动为SLAB内存池指定存储空间
|
||||
* @return ul
|
||||
*/
|
||||
ul slab_init();
|
||||
|
@ -1,219 +1,43 @@
|
||||
use core::intrinsics::unlikely;
|
||||
|
||||
use alloc::sync::Arc;
|
||||
|
||||
use crate::{
|
||||
arch::MMArch,
|
||||
kerror,
|
||||
libs::align::{check_aligned, page_align_up},
|
||||
mm::MemoryManagementArch,
|
||||
include::bindings::bindings::mm_stat_t,
|
||||
syscall::{Syscall, SystemError},
|
||||
};
|
||||
|
||||
use super::{
|
||||
allocator::page_frame::{PageFrameCount, VirtPageFrame},
|
||||
ucontext::{AddressSpace, DEFAULT_MMAP_MIN_ADDR},
|
||||
verify_area, VirtAddr,
|
||||
};
|
||||
|
||||
bitflags! {
|
||||
/// Memory protection flags
|
||||
pub struct ProtFlags: u64 {
|
||||
const PROT_NONE = 0x0;
|
||||
const PROT_READ = 0x1;
|
||||
const PROT_WRITE = 0x2;
|
||||
const PROT_EXEC = 0x4;
|
||||
}
|
||||
|
||||
/// Memory mapping flags
|
||||
pub struct MapFlags: u64 {
|
||||
const MAP_NONE = 0x0;
|
||||
/// share changes
|
||||
const MAP_SHARED = 0x1;
|
||||
/// changes are private
|
||||
const MAP_PRIVATE = 0x2;
|
||||
/// Interpret addr exactly
|
||||
const MAP_FIXED = 0x10;
|
||||
/// don't use a file
|
||||
const MAP_ANONYMOUS = 0x20;
|
||||
// linux-6.1-rc5/include/uapi/asm-generic/mman.h#7
|
||||
/// stack-like segment
|
||||
const MAP_GROWSDOWN = 0x100;
|
||||
/// ETXTBSY
|
||||
const MAP_DENYWRITE = 0x800;
|
||||
/// Mark it as an executable
|
||||
const MAP_EXECUTABLE = 0x1000;
|
||||
/// Pages are locked
|
||||
const MAP_LOCKED = 0x2000;
|
||||
/// don't check for reservations
|
||||
const MAP_NORESERVE = 0x4000;
|
||||
/// populate (prefault) pagetables
|
||||
const MAP_POPULATE = 0x8000;
|
||||
/// do not block on IO
|
||||
const MAP_NONBLOCK = 0x10000;
|
||||
/// give out an address that is best suited for process/thread stacks
|
||||
const MAP_STACK = 0x20000;
|
||||
/// create a huge page mapping
|
||||
const MAP_HUGETLB = 0x40000;
|
||||
/// perform synchronous page faults for the mapping
|
||||
const MAP_SYNC = 0x80000;
|
||||
/// MAP_FIXED which doesn't unmap underlying mapping
|
||||
const MAP_FIXED_NOREPLACE = 0x100000;
|
||||
|
||||
/// For anonymous mmap, memory could be uninitialized
|
||||
const MAP_UNINITIALIZED = 0x4000000;
|
||||
|
||||
}
|
||||
extern "C" {
|
||||
fn sys_do_brk(new_addr: usize) -> usize;
|
||||
fn sys_do_sbrk(incr: isize) -> usize;
|
||||
fn sys_do_mstat(dst: *mut mm_stat_t, from_user: bool) -> usize;
|
||||
}
|
||||
|
||||
impl Syscall {
|
||||
pub fn brk(new_addr: VirtAddr) -> Result<VirtAddr, SystemError> {
|
||||
// kdebug!("brk: new_addr={:?}", new_addr);
|
||||
let address_space = AddressSpace::current()?;
|
||||
let mut address_space = address_space.write();
|
||||
|
||||
unsafe {
|
||||
address_space
|
||||
.set_brk(VirtAddr::new(page_align_up(new_addr.data())))
|
||||
.ok();
|
||||
|
||||
return Ok(address_space.sbrk(0).unwrap());
|
||||
}
|
||||
}
|
||||
|
||||
pub fn sbrk(incr: isize) -> Result<VirtAddr, SystemError> {
|
||||
// kdebug!("pid:{}, sbrk: incr={}", current_pcb().pid, incr);
|
||||
|
||||
let address_space = AddressSpace::current()?;
|
||||
let mut address_space = address_space.write();
|
||||
let r = unsafe { address_space.sbrk(incr) };
|
||||
|
||||
// kdebug!("pid:{}, sbrk: r={:?}", current_pcb().pid, r);
|
||||
return r;
|
||||
}
|
||||
|
||||
/// ## mmap系统调用
|
||||
///
|
||||
/// 该函数的实现参考了Linux内核的实现,但是并不完全相同。因为有些功能咱们还没实现
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `start_vaddr`:映射的起始地址
|
||||
/// - `len`:映射的长度
|
||||
/// - `prot`:保护标志
|
||||
/// - `flags`:映射标志
|
||||
/// - `fd`:文件描述符(暂时不支持)
|
||||
/// - `offset`:文件偏移量 (暂时不支持)
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 成功时返回映射的起始地址,失败时返回错误码
|
||||
pub fn mmap(
|
||||
start_vaddr: VirtAddr,
|
||||
len: usize,
|
||||
prot_flags: usize,
|
||||
map_flags: usize,
|
||||
_fd: i32,
|
||||
_offset: usize,
|
||||
) -> Result<usize, SystemError> {
|
||||
let map_flags = MapFlags::from_bits_truncate(map_flags as u64);
|
||||
let prot_flags = ProtFlags::from_bits_truncate(prot_flags as u64);
|
||||
|
||||
if start_vaddr < VirtAddr::new(DEFAULT_MMAP_MIN_ADDR)
|
||||
&& map_flags.contains(MapFlags::MAP_FIXED)
|
||||
{
|
||||
kerror!(
|
||||
"mmap: MAP_FIXED is not supported for address below {}",
|
||||
DEFAULT_MMAP_MIN_ADDR
|
||||
pub fn brk(new_addr: usize) -> Result<usize, SystemError> {
|
||||
let ret = unsafe { sys_do_brk(new_addr) };
|
||||
if (ret as isize) < 0 {
|
||||
return Err(
|
||||
SystemError::from_posix_errno(-(ret as isize) as i32).expect("brk: Invalid errno")
|
||||
);
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
// 暂时不支持除匿名页以外的映射
|
||||
if !map_flags.contains(MapFlags::MAP_ANONYMOUS) {
|
||||
kerror!("mmap: not support file mapping");
|
||||
return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP);
|
||||
}
|
||||
|
||||
// 暂时不支持巨页映射
|
||||
if map_flags.contains(MapFlags::MAP_HUGETLB) {
|
||||
kerror!("mmap: not support huge page mapping");
|
||||
return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP);
|
||||
}
|
||||
let current_address_space = AddressSpace::current()?;
|
||||
let start_page = current_address_space.write().map_anonymous(
|
||||
start_vaddr,
|
||||
len,
|
||||
prot_flags,
|
||||
map_flags,
|
||||
true,
|
||||
)?;
|
||||
return Ok(start_page.virt_address().data());
|
||||
return Ok(ret);
|
||||
}
|
||||
|
||||
/// ## munmap系统调用
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `start_vaddr`:取消映射的起始地址(已经对齐到页)
|
||||
/// - `len`:取消映射的字节数(已经对齐到页)
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 成功时返回0,失败时返回错误码
|
||||
pub fn munmap(start_vaddr: VirtAddr, len: usize) -> Result<usize, SystemError> {
|
||||
assert!(start_vaddr.check_aligned(MMArch::PAGE_SIZE));
|
||||
assert!(check_aligned(len, MMArch::PAGE_SIZE));
|
||||
|
||||
if unlikely(verify_area(start_vaddr, len).is_err()) {
|
||||
return Err(SystemError::EINVAL);
|
||||
pub fn sbrk(incr: isize) -> Result<usize, SystemError> {
|
||||
let ret = unsafe { sys_do_sbrk(incr) };
|
||||
if (ret as isize) < 0 {
|
||||
return Err(
|
||||
SystemError::from_posix_errno(-(ret as isize) as i32).expect("sbrk: Invalid errno")
|
||||
);
|
||||
}
|
||||
if unlikely(len == 0) {
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
|
||||
let current_address_space: Arc<AddressSpace> = AddressSpace::current()?;
|
||||
let start_frame = VirtPageFrame::new(start_vaddr);
|
||||
let page_count = PageFrameCount::new(len / MMArch::PAGE_SIZE);
|
||||
|
||||
current_address_space
|
||||
.write()
|
||||
.munmap(start_frame, page_count)
|
||||
.map_err(|_| SystemError::EINVAL)?;
|
||||
return Ok(0);
|
||||
return Ok(ret);
|
||||
}
|
||||
|
||||
/// ## mprotect系统调用
|
||||
/// 获取内存统计信息
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `start_vaddr`:起始地址(已经对齐到页)
|
||||
/// - `len`:长度(已经对齐到页)
|
||||
/// - `prot_flags`:保护标志
|
||||
pub fn mprotect(
|
||||
start_vaddr: VirtAddr,
|
||||
len: usize,
|
||||
prot_flags: usize,
|
||||
) -> Result<usize, SystemError> {
|
||||
assert!(start_vaddr.check_aligned(MMArch::PAGE_SIZE));
|
||||
assert!(check_aligned(len, MMArch::PAGE_SIZE));
|
||||
|
||||
if unlikely(verify_area(start_vaddr, len).is_err()) {
|
||||
return Err(SystemError::EINVAL);
|
||||
/// TODO: 该函数不是符合POSIX标准的,在将来需要删除!
|
||||
pub fn mstat(dst: *mut mm_stat_t, from_user: bool) -> Result<usize, SystemError> {
|
||||
let ret = unsafe { sys_do_mstat(dst, from_user) };
|
||||
if (ret as isize) < 0 {
|
||||
return Err(SystemError::from_posix_errno(-(ret as isize) as i32)
|
||||
.expect("mstat: Invalid errno"));
|
||||
}
|
||||
if unlikely(len == 0) {
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
|
||||
let prot_flags = ProtFlags::from_bits(prot_flags as u64).ok_or(SystemError::EINVAL)?;
|
||||
|
||||
let current_address_space: Arc<AddressSpace> = AddressSpace::current()?;
|
||||
let start_frame = VirtPageFrame::new(start_vaddr);
|
||||
let page_count = PageFrameCount::new(len / MMArch::PAGE_SIZE);
|
||||
|
||||
current_address_space
|
||||
.write()
|
||||
.mprotect(start_frame, page_count, prot_flags)
|
||||
.map_err(|_| SystemError::EINVAL)?;
|
||||
return Ok(0);
|
||||
return Ok(ret);
|
||||
}
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
109
kernel/src/mm/utils.c
Normal file
109
kernel/src/mm/utils.c
Normal file
@ -0,0 +1,109 @@
|
||||
#include "internal.h"
|
||||
|
||||
extern uint64_t mm_total_2M_pages;
|
||||
|
||||
/**
|
||||
* @brief 获取指定虚拟地址处映射的物理地址
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vaddr 虚拟地址
|
||||
* @return uint64_t 已映射的物理地址
|
||||
*/
|
||||
uint64_t __mm_get_paddr(struct mm_struct *mm, uint64_t vaddr)
|
||||
{
|
||||
ul *tmp;
|
||||
|
||||
tmp = phys_2_virt((ul *)(((ul)mm->pgd) & (~0xfffUL)) + ((vaddr >> PAGE_GDT_SHIFT) & 0x1ff));
|
||||
|
||||
// pml4页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((vaddr >> PAGE_1G_SHIFT) & 0x1ff));
|
||||
|
||||
// pdpt页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
// 读取pdt页表项
|
||||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(vaddr) >> PAGE_2M_SHIFT) & 0x1ff)));
|
||||
|
||||
// pde页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
if (*tmp & (1 << 7))
|
||||
{
|
||||
// 当前为2M物理页
|
||||
return (*tmp) & (~0x1fffUL);
|
||||
}
|
||||
else
|
||||
{
|
||||
// 存在4级页表
|
||||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(vaddr) >> PAGE_4K_SHIFT) & 0x1ff)));
|
||||
|
||||
return (*tmp) & (~0x1ffUL);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 检测指定地址是否已经被映射
|
||||
*
|
||||
* @param page_table_phys_addr 页表的物理地址
|
||||
* @param virt_addr 要检测的地址
|
||||
* @return true 已经被映射
|
||||
* @return false
|
||||
*/
|
||||
bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr)
|
||||
{
|
||||
ul *tmp;
|
||||
|
||||
tmp = phys_2_virt((ul *)((ul)page_table_phys_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
|
||||
|
||||
// pml4页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
|
||||
|
||||
// pdpt页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
// 读取pdt页表项
|
||||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
|
||||
|
||||
// pde页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
if (*tmp & (1 << 7))
|
||||
{
|
||||
// 当前为2M物理页
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
// 存在4级页表
|
||||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_4K_SHIFT) & 0x1ff)));
|
||||
if (*tmp != 0)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 检测是否为有效的2M页(物理内存页)
|
||||
*
|
||||
* @param paddr 物理地址
|
||||
* @return int8_t 是 -> 1
|
||||
* 否 -> 0
|
||||
*/
|
||||
int8_t mm_is_2M_page(uint64_t paddr)
|
||||
{
|
||||
if (likely((paddr >> PAGE_2M_SHIFT) < mm_total_2M_pages))
|
||||
return 1;
|
||||
else
|
||||
return 0;
|
||||
}
|
275
kernel/src/mm/vma.c
Normal file
275
kernel/src/mm/vma.c
Normal file
@ -0,0 +1,275 @@
|
||||
#include "mm.h"
|
||||
#include "slab.h"
|
||||
#include "internal.h"
|
||||
|
||||
/**
|
||||
* @brief 获取一块新的vma结构体,并将其与指定的mm进行绑定
|
||||
*
|
||||
* @param mm 与VMA绑定的内存空间分布结构体
|
||||
* @return struct vm_area_struct* 新的VMA
|
||||
*/
|
||||
struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
|
||||
{
|
||||
struct vm_area_struct *vma = (struct vm_area_struct *)kmalloc(sizeof(struct vm_area_struct), 0);
|
||||
if (vma)
|
||||
vma_init(vma, mm);
|
||||
return vma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从链表中删除指定的vma结构体
|
||||
*
|
||||
* @param vma
|
||||
*/
|
||||
void vm_area_del(struct vm_area_struct *vma)
|
||||
{
|
||||
if (vma->vm_mm == NULL)
|
||||
return;
|
||||
__vma_unlink_list(vma->vm_mm, vma);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 释放vma结构体
|
||||
*
|
||||
* @param vma 待释放的vma结构体
|
||||
*/
|
||||
void vm_area_free(struct vm_area_struct *vma)
|
||||
{
|
||||
if (vma->vm_prev == NULL && vma->vm_next == NULL) // 如果当前是剩余的最后一个vma
|
||||
vma->vm_mm->vmas = NULL;
|
||||
kfree(vma);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将vma结构体插入mm_struct的链表之中
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vma 待插入的VMA结构体
|
||||
* @param prev 链表的前一个结点
|
||||
*/
|
||||
void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev)
|
||||
{
|
||||
struct vm_area_struct *next = NULL;
|
||||
vma->vm_prev = prev;
|
||||
if (prev) // 若指定了前一个结点,则直接连接
|
||||
{
|
||||
next = prev->vm_next;
|
||||
prev->vm_next = vma;
|
||||
}
|
||||
else // 否则将vma直接插入到给定的mm的vma链表之中
|
||||
{
|
||||
next = mm->vmas;
|
||||
mm->vmas = vma;
|
||||
}
|
||||
|
||||
vma->vm_next = next;
|
||||
|
||||
if (next != NULL)
|
||||
next->vm_prev = vma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将vma给定结构体从vma链表的结点之中删除
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vma 待插入的VMA结构体
|
||||
*/
|
||||
void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
|
||||
{
|
||||
struct vm_area_struct *prev, *next;
|
||||
next = vma->vm_next;
|
||||
prev = vma->vm_prev;
|
||||
if (prev)
|
||||
prev->vm_next = next;
|
||||
else // 当前vma是链表中的第一个vma
|
||||
mm->vmas = next;
|
||||
|
||||
if (next)
|
||||
next->vm_prev = prev;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 查找第一个符合“addr < vm_end”条件的vma
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param addr 虚拟地址
|
||||
* @return struct vm_area_struct* 符合条件的vma
|
||||
*/
|
||||
struct vm_area_struct *vma_find(struct mm_struct *mm, uint64_t addr)
|
||||
{
|
||||
struct vm_area_struct *vma = mm->vmas;
|
||||
struct vm_area_struct *result = NULL;
|
||||
while (vma != NULL)
|
||||
{
|
||||
if (vma->vm_end > addr)
|
||||
{
|
||||
result = vma;
|
||||
break;
|
||||
}
|
||||
vma = vma->vm_next;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 插入vma
|
||||
*
|
||||
* @param mm
|
||||
* @param vma
|
||||
* @return int
|
||||
*/
|
||||
int vma_insert(struct mm_struct *mm, struct vm_area_struct *vma)
|
||||
{
|
||||
|
||||
struct vm_area_struct *prev;
|
||||
|
||||
prev = vma_find(mm, vma->vm_start);
|
||||
|
||||
if (prev && prev->vm_start <= vma->vm_start && prev->vm_end >= vma->vm_end)
|
||||
{
|
||||
// 已经存在了相同的vma
|
||||
return -EEXIST;
|
||||
}
|
||||
// todo: bugfix: 这里的第二种情况貌似从来不会满足
|
||||
else if (prev && ((vma->vm_start >= prev->vm_start && vma->vm_start <= prev->vm_end) || (prev->vm_start <= vma->vm_end && prev->vm_start >= vma->vm_start)))
|
||||
{
|
||||
//部分重叠
|
||||
if ((!CROSS_2M_BOUND(vma->vm_start, prev->vm_start)) && (!CROSS_2M_BOUND(vma->vm_end, prev->vm_end))&& vma->vm_end)
|
||||
{
|
||||
//合并vma 并改变链表vma的范围
|
||||
kdebug("before combining vma:vm_start = %#018lx, vm_end = %#018lx\n", vma->vm_start, vma->vm_end);
|
||||
|
||||
prev->vm_start = (vma->vm_start < prev->vm_start )? vma->vm_start : prev->vm_start;
|
||||
prev->vm_end = (vma->vm_end > prev->vm_end) ? vma->vm_end : prev->vm_end;
|
||||
// 计算page_offset
|
||||
prev->page_offset = prev->vm_start - (prev->vm_start & PAGE_2M_MASK);
|
||||
kdebug("combined vma:vm_start = %#018lx, vm_end = %#018lx\nprev:vm_start = %018lx, vm_end = %018lx\n", vma->vm_start, vma->vm_end, prev->vm_start, prev->vm_end);
|
||||
kinfo("vma has same part\n");
|
||||
return __VMA_MERGED;
|
||||
}
|
||||
}
|
||||
|
||||
// prev = vma_find(mm, vma->vm_start);
|
||||
|
||||
if (prev == NULL) // 要将当前vma插入到链表的尾部
|
||||
{
|
||||
struct vm_area_struct *ptr = mm->vmas;
|
||||
while (ptr)
|
||||
{
|
||||
if (ptr->vm_next)
|
||||
ptr = ptr->vm_next;
|
||||
else
|
||||
{
|
||||
prev = ptr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
prev = prev->vm_prev;
|
||||
__vma_link_list(mm, vma, prev);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 创建anon_vma,并将其与页面结构体进行绑定
|
||||
* 若提供的页面结构体指针为NULL,则只创建,不绑定
|
||||
*
|
||||
* @param page 页面结构体的指针
|
||||
* @param lock_page 是否将页面结构体加锁
|
||||
* @return struct anon_vma_t* 创建好的anon_vma
|
||||
*/
|
||||
struct anon_vma_t *__anon_vma_create_alloc(struct Page *page, bool lock_page)
|
||||
{
|
||||
struct anon_vma_t *anon_vma = (struct anon_vma_t *)kmalloc(sizeof(struct anon_vma_t), 0);
|
||||
if (unlikely(anon_vma == NULL))
|
||||
return NULL;
|
||||
memset(anon_vma, 0, sizeof(struct anon_vma_t));
|
||||
|
||||
list_init(&anon_vma->vma_list);
|
||||
semaphore_init(&anon_vma->sem, 1);
|
||||
|
||||
// 需要和page进行绑定
|
||||
if (page != NULL)
|
||||
{
|
||||
if (lock_page == true) // 需要加锁
|
||||
{
|
||||
uint64_t rflags;
|
||||
spin_lock(&page->op_lock);
|
||||
page->anon_vma = anon_vma;
|
||||
spin_unlock(&page->op_lock);
|
||||
}
|
||||
else
|
||||
page->anon_vma = anon_vma;
|
||||
|
||||
anon_vma->page = page;
|
||||
}
|
||||
return anon_vma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将指定的vma加入到anon_vma的管理范围之中
|
||||
*
|
||||
* @param anon_vma 页面的anon_vma
|
||||
* @param vma 待加入的vma
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_add(struct anon_vma_t *anon_vma, struct vm_area_struct *vma)
|
||||
{
|
||||
semaphore_down(&anon_vma->sem);
|
||||
list_add(&anon_vma->vma_list, &vma->anon_vma_list);
|
||||
vma->anon_vma = anon_vma;
|
||||
atomic_inc(&anon_vma->ref_count);
|
||||
semaphore_up(&anon_vma->sem);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 释放anon vma结构体
|
||||
*
|
||||
* @param anon_vma 待释放的anon_vma结构体
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_free(struct anon_vma_t *anon_vma)
|
||||
{
|
||||
if (anon_vma->page != NULL)
|
||||
{
|
||||
spin_lock(&anon_vma->page->op_lock);
|
||||
anon_vma->page->anon_vma = NULL;
|
||||
spin_unlock(&anon_vma->page->op_lock);
|
||||
}
|
||||
kfree(anon_vma);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从anon_vma的管理范围中删除指定的vma
|
||||
* (在进入这个函数之前,应该要对anon_vma加锁)
|
||||
* @param vma 将要取消对应的anon_vma管理的vma结构体
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_del(struct vm_area_struct *vma)
|
||||
{
|
||||
// 当前vma没有绑定anon_vma
|
||||
if (vma->anon_vma == NULL)
|
||||
return -EINVAL;
|
||||
|
||||
list_del(&vma->anon_vma_list);
|
||||
atomic_dec(&vma->anon_vma->ref_count);
|
||||
|
||||
// 若当前anon_vma的引用计数归零,则意味着可以释放内存页
|
||||
if (unlikely(atomic_read(&vma->anon_vma->ref_count) == 0)) // 应当释放该anon_vma
|
||||
{
|
||||
// 若页面结构体是mmio创建的,则释放页面结构体
|
||||
if (vma->anon_vma->page->attr & PAGE_DEVICE)
|
||||
kfree(vma->anon_vma->page);
|
||||
else
|
||||
free_pages(vma->anon_vma->page, 1);
|
||||
__anon_vma_free(vma->anon_vma);
|
||||
}
|
||||
|
||||
// 清理当前vma的关联数据
|
||||
vma->anon_vma = NULL;
|
||||
list_init(&vma->anon_vma_list);
|
||||
}
|
Reference in New Issue
Block a user