将分配簇的功能单独独立成一个函数

This commit is contained in:
fslongjin 2022-07-05 23:07:25 +08:00
parent 9bf52cf2ab
commit c4f90f4883
7 changed files with 410 additions and 200 deletions

View File

@ -18,7 +18,7 @@ LD_LIST := head.o
OBJ_LIST := head.o
kernel_subdirs := common driver process debug
kernel_subdirs := common driver process debug filesystem
@ -78,14 +78,6 @@ cpu.o: common/cpu.c
softirq.o: exception/softirq.c
gcc $(CFLAGS) -c exception/softirq.c -o exception/softirq.o
fat32.o: filesystem/fat32/fat32.c
gcc $(CFLAGS) -c filesystem/fat32/fat32.c -o filesystem/fat32/fat32.o
MBR.o: filesystem/MBR.c
gcc $(CFLAGS) -c filesystem/MBR.c -o filesystem/MBR.o
VFS.o: filesystem/VFS/VFS.c
gcc $(CFLAGS) -c filesystem/VFS/VFS.c -o filesystem/VFS/VFS.o
# IPI的代码
ifeq ($(ARCH), __x86_64__)
@ -164,7 +156,7 @@ all: kernel
echo "Done."
kernel: head.o entry.o main.o printk.o trap.o mm.o slab.o irq.o pic.o sched.o syscall.o multiboot2.o cpu.o acpi.o ps2_keyboard.o ps2_mouse.o ata.o pci.o ahci.o smp.o apu_boot.o rtc.o HPET.o softirq.o timer.o fat32.o MBR.o VFS.o $(OBJ_LIST)
kernel: head.o entry.o main.o printk.o trap.o mm.o slab.o irq.o pic.o sched.o syscall.o multiboot2.o cpu.o acpi.o ps2_keyboard.o ps2_mouse.o ata.o pci.o ahci.o smp.o apu_boot.o rtc.o HPET.o softirq.o timer.o $(OBJ_LIST)
@list='$(kernel_subdirs)'; for subdir in $$list; do \
echo "make all in $$subdir";\

View File

@ -0,0 +1,20 @@
CFLAGS += -I .
all: fat32.o MBR.o VFS.o fat_ent.o
fat32.o: fat32/fat32.c
gcc $(CFLAGS) -c fat32/fat32.c -o fat32/fat32.o
MBR.o: MBR.c
gcc $(CFLAGS) -c MBR.c -o MBR.o
VFS.o: VFS/VFS.c
gcc $(CFLAGS) -c VFS/VFS.c -o VFS/VFS.o
fat_ent.o: fat32/fat_ent.c
gcc $(CFLAGS) -c fat32/fat_ent.c -o fat32/fat_ent.o
clean:
echo "Done."

View File

@ -107,7 +107,13 @@ struct vfs_super_block_operations_t
*/
struct vfs_inode_operations_t
{
long (*create)(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry, int mode);
/**
* @brief
* @param inode inode结构体
* @param parent_dEntry dentry
* @param mode
*/
long (*create)(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *parent_dEntry, int mode);
/**
* @brief
* @param parent_inode

View File

@ -6,6 +6,7 @@
#include <mm/slab.h>
#include <common/errno.h>
#include <common/stdio.h>
#include "fat_ent.h"
struct vfs_super_block_operations_t fat32_sb_ops;
struct vfs_dir_entry_operations_t fat32_dEntry_ops;
@ -54,58 +55,6 @@ static uint8_t fat32_ChkSum(uint8_t *name)
}
return chksum;
}
/**
* @brief FAT表项
*
* @param fsbi fat32超级块私有信息结构体
* @param cluster
* @return uint32_t
*/
uint32_t fat32_read_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster)
{
// 计算每个扇区内含有的FAT表项数
// FAT每项4bytes
uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂
uint32_t buf[256];
memset(buf, 0, fsbi->bytes_per_sec);
// 读取一个sector的数据
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
// 返回下一个fat表项的值也就是下一个cluster
return buf[cluster & (fat_ent_per_sec - 1)] & 0x0fffffff;
}
/**
* @brief FAT表项
*
* @param fsbi fat32超级块私有信息结构体
* @param cluster
* @param value fat表项的值
* @return uint32_t errcode
*/
uint32_t fat32_write_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t value)
{
// 计算每个扇区内含有的FAT表项数
// FAT每项4bytes
uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂
uint32_t *buf = kmalloc(fsbi->bytes_per_sec, 0);
memset(buf, 0, fsbi->bytes_per_sec);
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
buf[cluster & (fat_ent_per_sec - 1)] = (buf[cluster & (fat_ent_per_sec - 1)] & 0xf0000000) | (value & 0x0fffffff);
// 向FAT1和FAT2写入数据
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT2_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
kfree(buf);
return 0;
}
/**
* @brief
@ -671,32 +620,32 @@ long fat32_read(struct vfs_file_t *file_ptr, char *buf, int64_t count, long *pos
* @param fsbi fat32超级块信息结构体
* @return uint64_t 0
*/
uint64_t fat32_find_available_cluster(fat32_sb_info_t *fsbi)
{
uint64_t sec_per_fat = fsbi->sec_per_FAT;
// uint64_t fat32_find_available_cluster(fat32_sb_info_t *fsbi)
// {
// uint64_t sec_per_fat = fsbi->sec_per_FAT;
// 申请1扇区的缓冲区
uint32_t *buf = (uint32_t *)kmalloc(fsbi->bytes_per_sec, 0);
int ent_per_sec = (fsbi->bytes_per_sec >> 2);
for (int i = 0; i < sec_per_fat; ++i)
{
memset(buf, 0, fsbi->bytes_per_sec);
// // 申请1扇区的缓冲区
// uint32_t *buf = (uint32_t *)kmalloc(fsbi->bytes_per_sec, 0);
// int ent_per_sec = (fsbi->bytes_per_sec >> 2);
// for (int i = 0; i < sec_per_fat; ++i)
// {
// memset(buf, 0, fsbi->bytes_per_sec);
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + i, 1, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
// 依次检查簇是否空闲
for (int j = 0; j < ent_per_sec; ++j)
{
// 找到空闲簇
if ((buf[j] & 0x0fffffff) == 0)
{
kfree(buf);
return i * ent_per_sec + j;
}
}
}
kfree(buf);
return 0;
}
// ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + i, 1, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
// // 依次检查簇是否空闲
// for (int j = 0; j < ent_per_sec; ++j)
// {
// // 找到空闲簇
// if ((buf[j] & 0x0fffffff) == 0)
// {
// kfree(buf);
// return i * ent_per_sec + j;
// }
// }
// }
// kfree(buf);
// return 0;
// }
/**
* @brief fat32文件系统写入数据
@ -712,7 +661,7 @@ long fat32_write(struct vfs_file_t *file_ptr, char *buf, int64_t count, long *po
fat32_sb_info_t *fsbi = (fat32_sb_info_t *)(file_ptr->dEntry->dir_inode->sb->private_sb_info);
// First cluster num of the file
uint64_t cluster = finode->first_clus;
uint32_t cluster = finode->first_clus;
int64_t flags = 0;
// kdebug("fsbi->bytes_per_clus=%d fsbi->sec_per_clus=%d finode->first_clus=%d *position=%d", fsbi->bytes_per_clus, fsbi->sec_per_clus, finode->first_clus, *position);
@ -724,9 +673,13 @@ long fat32_write(struct vfs_file_t *file_ptr, char *buf, int64_t count, long *po
if (!cluster) // 起始簇号为0说明是空文件
{
// 找一个可用的簇
cluster = fat32_find_available_cluster(fsbi);
flags = 1;
// // 找一个可用的簇
// cluster = fat32_find_available_cluster(fsbi);
// flags = 1;
// 分配空闲簇
if (fat32_alloc_clusters(file_ptr->dEntry->dir_inode, &cluster, 1) != 0)
return -ENOSPC;
}
else
{
@ -739,14 +692,14 @@ long fat32_write(struct vfs_file_t *file_ptr, char *buf, int64_t count, long *po
if (!cluster)
return -ENOSPC;
if (flags) // 空文件
{
// kdebug("empty file");
finode->first_clus = cluster;
// 写入目录项
file_ptr->dEntry->dir_inode->sb->sb_ops->write_inode(file_ptr->dEntry->dir_inode);
fat32_write_FAT_entry(fsbi, cluster, 0x0ffffff8); // 写入fat表项
}
// if (flags) // 空文件
// {
// // kdebug("empty file");
// finode->first_clus = cluster;
// // 写入目录项
// file_ptr->dEntry->dir_inode->sb->sb_ops->write_inode(file_ptr->dEntry->dir_inode);
// fat32_write_FAT_entry(fsbi, cluster, 0x0ffffff8); // 写入fat表项
// }
int64_t bytes_remain = count;
@ -809,15 +762,13 @@ long fat32_write(struct vfs_file_t *file_ptr, char *buf, int64_t count, long *po
break;
if (next_clus >= 0x0ffffff8) // 已经到达了最后一个簇,需要分配新簇
{
next_clus = fat32_find_available_cluster(fsbi);
if (!next_clus) // 没有空闲簇
if(fat32_alloc_clusters(file_ptr->dEntry->dir_inode, &next_clus, 1) != 0)
{
// 没有空闲簇
kfree(tmp_buffer);
return -ENOSPC;
}
// 将簇加入到文件末尾
fat32_write_FAT_entry(fsbi, cluster, next_clus);
fat32_write_FAT_entry(fsbi, next_clus, 0x0ffffff8);
cluster = next_clus; // 切换当前簇
flags = 1; // 标记当前簇是新分配的簇
}
@ -896,99 +847,20 @@ struct vfs_file_operations_t fat32_file_ops =
.readdir = fat32_readdir,
};
// todo: create
long fat32_create(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dentry, int mode)
{
}
/**
* @brief inode的目录项簇中num个空的目录项
*
* @param parent_inode inode
* @param num
* @param mode
* @param res_sector
* @param res_cluster
* @param res_data_buf_base
* @return struct fat32_Directory_t* entry的指针num个
* @brief
* @param inode inode结构体
* @param parent_dEntry dentry
* @param mode
*/
struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *parent_inode, uint32_t num, uint32_t mode, uint32_t *res_sector, uint64_t *res_cluster, uint64_t *res_data_buf_base)
long fat32_create(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *parent_dEntry, int mode)
{
kdebug("find empty_dentry");
struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)parent_inode->private_inode_info;
fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info;
uint8_t *buf = kmalloc(fsbi->bytes_per_clus, 0);
memset(buf, 0, fsbi->bytes_per_clus);
// 计算父目录项的起始簇号
uint32_t cluster = finode->first_clus;
struct fat32_Directory_t *tmp_dEntry = NULL;
// 指向最终的有用的dentry的指针
struct fat32_Directory_t *result_dEntry = NULL;
while (true)
{
// 计算父目录项的起始LBA扇区号
uint64_t sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus;
// 读取父目录项的起始簇数据
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
tmp_dEntry = (struct fat32_Directory_t *)buf;
// 计数连续的空目录项
uint32_t count_continuity = 0;
// 查找连续num个空闲目录项
for (int i = 0; (i < fsbi->bytes_per_clus) && count_continuity < num; i += 32, ++tmp_dEntry)
{
if (!(tmp_dEntry->DIR_Name[0] == 0xe5 || tmp_dEntry->DIR_Name[0] == 0x00))
{
count_continuity = 0;
continue;
}
if (count_continuity == 0)
result_dEntry = tmp_dEntry;
++count_continuity;
}
// 成功查找到符合要求的目录项
if (count_continuity == num)
{
result_dEntry += (num - 1);
*res_sector = sector;
*res_data_buf_base = (uint64_t)buf;
*res_cluster = cluster;
return result_dEntry;
}
// 当前簇没有发现符合条件的空闲目录项,寻找下一个簇
uint old_cluster = cluster;
cluster = fat32_read_FAT_entry(fsbi, cluster);
if (cluster >= 0x0ffffff7) // 寻找完父目录的所有簇,都没有找到符合要求的空目录项
{
// 新增一个簇
cluster = fat32_find_available_cluster(fsbi);
kdebug("try to allocate a new cluster to parent dentry, cluster=%d, old_cluster=%d", cluster, old_cluster);
if (cluster == 0)
{
kerror("Cannot allocate a new cluster!");
while (1)
pause();
}
fat32_write_FAT_entry(fsbi, old_cluster, cluster);
fat32_write_FAT_entry(fsbi, cluster, 0x0ffffff8);
// 将这个新的簇清空
sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus;
void *tmp_buf = kmalloc(fsbi->bytes_per_clus, 0);
memset(tmp_buf, 0, fsbi->bytes_per_clus);
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
kfree(tmp_buf);
}
}
// 文件系统超级块信息
fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_dEntry->dir_inode->sb->private_sb_info;
// 父目录项的inode的私有信息
struct fat32_inode_info_t *parent_inode_info = (struct fat32_inode_info_t *)parent_dEntry->dir_inode->private_inode_info;
}
/**
* @brief
* @param inode inode
@ -997,8 +869,7 @@ struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *paren
*/
int64_t fat32_mkdir(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dEntry, int mode)
{
// 先检查是否有重名的目录项,然后分配一个簇
int64_t retval = 0;
// 文件系统超级块信息
fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info;
@ -1010,6 +881,7 @@ int64_t fat32_mkdir(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_
// 计算总共需要多少个目录项
uint32_t cnt_longname = (dEntry->name_length + 25) / 26;
// 默认都是创建长目录项来存储
if (cnt_longname == 0)
cnt_longname = 1;
@ -1022,9 +894,17 @@ int64_t fat32_mkdir(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_
struct fat32_Directory_t *empty_fat32_dentry = fat32_find_empty_dentry(parent_inode, cnt_longname + 1, 0, &tmp_dentry_sector, &tmp_parent_dentry_clus, &tmp_dentry_clus_buf_addr);
kdebug("found empty dentry");
// ====== 为新的文件夹分配一个簇 =======
uint32_t new_dir_clus = fat32_find_available_cluster(fsbi);
kdebug("new_dir_clus=%d", new_dir_clus);
fat32_write_FAT_entry(fsbi, new_dir_clus, 0x0ffffff8);
// uint32_t new_dir_clus = fat32_find_available_cluster(fsbi);
// kdebug("new_dir_clus=%d", new_dir_clus);
// fat32_write_FAT_entry(fsbi, new_dir_clus, 0x0ffffff8);
// ====== 为新的文件夹分配一个簇 =======
uint32_t new_dir_clus;
if (fat32_alloc_clusters(parent_inode, &new_dir_clus, 1) != 0)
{
retval = -ENOSPC;
goto fail;
}
// ====== 填写短目录项
memset(empty_fat32_dentry, 0, sizeof(struct fat32_Directory_t));
@ -1157,6 +1037,10 @@ int64_t fat32_mkdir(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_
kfree((void *)tmp_dentry_clus_buf_addr);
return 0;
fail:;
// 释放在find empty dentry中动态申请的缓冲区
kfree((void *)tmp_dentry_clus_buf_addr);
return retval;
}
// todo: rmdir

View File

@ -155,7 +155,7 @@ typedef struct fat32_partition_info_t fat32_sb_info_t;
struct fat32_inode_info_t
{
uint64_t first_clus; // 文件的起始簇号
uint32_t first_clus; // 文件的起始簇号
uint64_t dEntry_location_clus; // fat entry的起始簇号 dEntry struct in cluster (0 is root, 1 is invalid)
uint64_t dEntry_location_clus_offset; // fat entry在起始簇中的偏移量(是第几个entry) dEntry struct offset in cluster

View File

@ -0,0 +1,253 @@
#include "fat_ent.h"
#include <driver/disk/ahci/ahci.h>
#include <common/errno.h>
#include <mm/slab.h>
/**
* @brief
*
* @param inode inode
* @param clusters
* @param num_clusters
* @return int
*/
int fat32_alloc_clusters(struct vfs_index_node_t *inode, uint32_t *clusters, int32_t num_clusters)
{
int retval = 0;
fat32_sb_info_t *fsbi = (fat32_sb_info_t *)inode->sb->private_sb_info;
struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)inode->private_inode_info;
uint64_t sec_per_fat = fsbi->sec_per_FAT;
// todo: 对alloc的过程加锁
// 申请1扇区的缓冲区
uint32_t *buf = (uint32_t *)kmalloc(fsbi->bytes_per_sec, 0);
int ent_per_sec = (fsbi->bytes_per_sec >> 2);
int clus_idx = 0;
for (int i = 0; i < sec_per_fat; ++i)
{
if (clus_idx >= num_clusters)
goto done;
memset(buf, 0, fsbi->bytes_per_sec);
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + i, 1, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
// 依次检查簇是否空闲
for (int j = 0; j < ent_per_sec; ++j)
{
if (clus_idx >= num_clusters)
goto done;
// 找到空闲簇
if ((buf[j] & 0x0fffffff) == 0)
{
clusters[clus_idx] = i * ent_per_sec + j;
++clus_idx;
}
}
}
// 空间不足
retval = -ENOSPC;
done:;
kfree(buf);
if (retval == 0) // 成功
{
int cluster, idx;
if (finode->first_clus == 0)
{
// 空文件
finode->first_clus = clusters[0];
cluster = finode->first_clus;
// 写入inode到磁盘
inode->sb->sb_ops->write_inode(inode);
idx = 1;
}
else
{
// todo: 跳转到文件当前的最后一个簇
idx = 0;
int tmp_clus = finode->first_clus;
while (true)
{
tmp_clus = fat32_read_FAT_entry(fsbi, cluster);
if (tmp_clus < 0x0ffffff7)
cluster = tmp_clus;
else
break;
}
}
// 写入fat表
for (int i = idx; i < num_clusters; ++i)
{
fat32_write_FAT_entry(fsbi, cluster, clusters[i]);
cluster = clusters[i];
}
fat32_write_FAT_entry(fsbi, cluster, 0x0ffffff8);
return 0;
}
else // 出现错误
{
if (clus_idx < num_clusters)
fat32_free_clusters(inode, clusters[0]);
return retval;
}
return 0;
}
/**
* @brief inode的cluster开始的所有簇
*
* @param inode inode
* @param cluster
* @return int
*/
int fat32_free_clusters(struct vfs_index_node_t *inode, int32_t cluster)
{
// todo: 释放簇
return 0;
}
/**
* @brief FAT表项
*
* @param fsbi fat32超级块私有信息结构体
* @param cluster
* @return uint32_t
*/
uint32_t fat32_read_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster)
{
// 计算每个扇区内含有的FAT表项数
// FAT每项4bytes
uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂
uint32_t buf[256];
memset(buf, 0, fsbi->bytes_per_sec);
// 读取一个sector的数据
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
// 返回下一个fat表项的值也就是下一个cluster
return buf[cluster & (fat_ent_per_sec - 1)] & 0x0fffffff;
}
/**
* @brief FAT表项
*
* @param fsbi fat32超级块私有信息结构体
* @param cluster
* @param value fat表项的值
* @return uint32_t errcode
*/
uint32_t fat32_write_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t value)
{
// 计算每个扇区内含有的FAT表项数
// FAT每项4bytes
uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂
uint32_t *buf = kmalloc(fsbi->bytes_per_sec, 0);
memset(buf, 0, fsbi->bytes_per_sec);
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
buf[cluster & (fat_ent_per_sec - 1)] = (buf[cluster & (fat_ent_per_sec - 1)] & 0xf0000000) | (value & 0x0fffffff);
// 向FAT1和FAT2写入数据
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT2_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
kfree(buf);
return 0;
}
/**
* @brief inode的目录项簇中num个空的目录项
*
* @param parent_inode inode
* @param num
* @param mode
* @param res_sector
* @param res_cluster
* @param res_data_buf_base
* @return struct fat32_Directory_t* entry的指针num个
*/
struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *parent_inode, uint32_t num, uint32_t mode, uint32_t *res_sector, uint64_t *res_cluster, uint64_t *res_data_buf_base)
{
kdebug("find empty_dentry");
struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)parent_inode->private_inode_info;
fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info;
uint8_t *buf = kmalloc(fsbi->bytes_per_clus, 0);
memset(buf, 0, fsbi->bytes_per_clus);
// 计算父目录项的起始簇号
uint32_t cluster = finode->first_clus;
struct fat32_Directory_t *tmp_dEntry = NULL;
// 指向最终的有用的dentry的指针
struct fat32_Directory_t *result_dEntry = NULL;
while (true)
{
// 计算父目录项的起始LBA扇区号
uint64_t sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus;
// 读取父目录项的起始簇数据
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
tmp_dEntry = (struct fat32_Directory_t *)buf;
// 计数连续的空目录项
uint32_t count_continuity = 0;
// 查找连续num个空闲目录项
for (int i = 0; (i < fsbi->bytes_per_clus) && count_continuity < num; i += 32, ++tmp_dEntry)
{
if (!(tmp_dEntry->DIR_Name[0] == 0xe5 || tmp_dEntry->DIR_Name[0] == 0x00))
{
count_continuity = 0;
continue;
}
if (count_continuity == 0)
result_dEntry = tmp_dEntry;
++count_continuity;
}
// 成功查找到符合要求的目录项
if (count_continuity == num)
{
result_dEntry += (num - 1);
*res_sector = sector;
*res_data_buf_base = (uint64_t)buf;
*res_cluster = cluster;
return result_dEntry;
}
// 当前簇没有发现符合条件的空闲目录项,寻找下一个簇
uint64_t old_cluster = cluster;
cluster = fat32_read_FAT_entry(fsbi, cluster);
if (cluster >= 0x0ffffff7) // 寻找完父目录的所有簇,都没有找到符合要求的空目录项
{
// 新增一个簇
if (fat32_alloc_clusters(parent_inode, &cluster, 1) != 0)
{
kerror("Cannot allocate a new cluster!");
while (1)
pause();
}
// 将这个新的簇清空
sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus;
void *tmp_buf = kmalloc(fsbi->bytes_per_clus, 0);
memset(tmp_buf, 0, fsbi->bytes_per_clus);
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
kfree(tmp_buf);
}
}
}

View File

@ -0,0 +1,55 @@
#pragma once
#include "fat32.h"
#include <filesystem/VFS/VFS.h>
/**
* @brief
*
* @param inode inode
* @param clusters
* @param num_clusters
* @return int
*/
int fat32_alloc_clusters(struct vfs_index_node_t *inode, uint32_t *clusters, int32_t num_clusters);
/**
* @brief inode的cluster开始的所有簇
*
* @param inode inode
* @param cluster
* @return int
*/
int fat32_free_clusters(struct vfs_index_node_t * inode, int32_t cluster);
/**
* @brief FAT表项
*
* @param fsbi fat32超级块私有信息结构体
* @param cluster
* @return uint32_t
*/
uint32_t fat32_read_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster);
/**
* @brief FAT表项
*
* @param fsbi fat32超级块私有信息结构体
* @param cluster
* @param value fat表项的值
* @return uint32_t errcode
*/
uint32_t fat32_write_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t value);
/**
* @brief inode的目录项簇中num个空的目录项
*
* @param parent_inode inode
* @param num
* @param mode
* @param res_sector
* @param res_cluster
* @param res_data_buf_base
* @return struct fat32_Directory_t* entry的指针num个
*/
struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *parent_inode, uint32_t num, uint32_t mode, uint32_t *res_sector, uint64_t *res_cluster, uint64_t *res_data_buf_base);