Fix the logics for the coarse resolution clock id in VDSO.

This commit is contained in:
Chen Chengjun 2024-05-08 20:01:25 +08:00 committed by Tate, Hongliang Tian
parent ff3ff0a598
commit c3d0c59041
7 changed files with 208 additions and 124 deletions

View File

@ -68,6 +68,7 @@ pub mod vm;
pub fn init() {
driver::init();
time::init();
net::init();
sched::init();
fs::rootfs::init(boot::initramfs()).unwrap();

View File

@ -9,13 +9,17 @@ use crate::prelude::*;
mod system_time;
pub use system_time::SystemTime;
pub use system_time::{SystemTime, START_TIME};
pub type clockid_t = i32;
pub type time_t = i64;
pub type suseconds_t = i64;
pub type clock_t = i64;
pub(super) fn init() {
system_time::init_start_time();
}
#[derive(Debug, Copy, Clone, TryFromInt, PartialEq)]
#[repr(i32)]
pub enum ClockID {

View File

@ -3,6 +3,7 @@
use core::time::Duration;
use aster_time::{read_monotonic_time, read_start_time};
use spin::Once;
use time::{Date, Month, PrimitiveDateTime, Time};
use crate::prelude::*;
@ -11,6 +12,13 @@ use crate::prelude::*;
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct SystemTime(PrimitiveDateTime);
pub static START_TIME: Once<SystemTime> = Once::new();
pub(super) fn init_start_time() {
let start_time = convert_system_time(read_start_time()).unwrap();
START_TIME.call_once(|| start_time);
}
impl SystemTime {
/// The unix epoch, which represents 1970-01-01 00:00:00
pub const UNIX_EPOCH: SystemTime = SystemTime::unix_epoch();
@ -29,10 +37,8 @@ impl SystemTime {
/// Returns the current system time
pub fn now() -> Self {
let start = read_start_time();
// The get real time result should always be valid
convert_system_time(start)
START_TIME
.get()
.unwrap()
.checked_add(read_monotonic_time())
.unwrap()

View File

@ -12,20 +12,22 @@
//! use. It also hooks up the VDSO data update routine to the time management subsystem for periodic updates.
use alloc::{boxed::Box, sync::Arc};
use core::time::Duration;
use aster_frame::{
sync::Mutex,
vm::{VmIo, PAGE_SIZE},
sync::SpinLock,
timer::Timer,
vm::{VmFrame, VmIo, PAGE_SIZE},
};
use aster_rights::Rights;
use aster_time::Instant;
use aster_time::{read_monotonic_time, Instant};
use aster_util::coeff::Coeff;
use pod::Pod;
use spin::Once;
use crate::{
fs::fs_resolver::{FsPath, FsResolver, AT_FDCWD},
time::{ClockID, SystemTime, ALL_SUPPORTED_CLOCK_IDS},
time::{ClockID, SystemTime, START_TIME},
vm::vmo::{Vmo, VmoOptions},
};
@ -46,20 +48,25 @@ enum VdsoClockMode {
}
/// Instant used in `VdsoData`.
/// The `VdsoInstant` records the second of an instant,
/// and the calculation results of multiplying `nanos` with `mult` in the corresponding `VdsoData`.
///
/// Each `VdsoInstant` will store a instant information for a specified `ClockID`.
/// The `secs` field will record the seconds of the instant,
/// and the `nanos_info` will store the nanoseconds of the instant
/// (for `CLOCK_REALTIME_COARSE` and `CLOCK_MONOTONIC_COARSE`) or
/// the calculation results of left-shift `nanos` with `lshift`
/// (for other high-resolution `ClockID`s).
#[repr(C)]
#[derive(Debug, Default, Copy, Clone, Pod)]
struct VdsoInstant {
secs: u64,
nanos_lshift: u64,
nanos_info: u64,
}
impl VdsoInstant {
const fn zero() -> Self {
Self {
secs: 0,
nanos_lshift: 0,
nanos_info: 0,
}
}
}
@ -70,7 +77,7 @@ struct ArchVdsoData {}
/// A POD (Plain Old Data) structure maintaining timing information that required for userspace.
///
/// Since currently we directly use the vdso shared library of Linux,
/// Since currently we directly use the VDSO shared library of Linux,
/// currently it aligns with the Linux VDSO shared library format and contents
/// (Linux v6.2.10)
#[repr(C)]
@ -93,6 +100,18 @@ struct VdsoData {
arch_data: ArchVdsoData,
}
const HIGH_RES_CLOCK_IDS: [ClockID; 4] = [
ClockID::CLOCK_REALTIME,
ClockID::CLOCK_MONOTONIC,
ClockID::CLOCK_MONOTONIC_RAW,
ClockID::CLOCK_BOOTTIME,
];
const COARSE_RES_CLOCK_IDS: [ClockID; 2] = [
ClockID::CLOCK_REALTIME_COARSE,
ClockID::CLOCK_MONOTONIC_COARSE,
];
impl VdsoData {
const fn empty() -> Self {
VdsoData {
@ -111,13 +130,16 @@ impl VdsoData {
}
}
/// Init vdso data based on the default clocksource.
/// Init VDSO data based on the default clocksource.
fn init(&mut self) {
let clocksource = aster_time::default_clocksource();
let coeff = clocksource.coeff();
self.set_clock_mode(DEFAULT_CLOCK_MODE);
self.set_coeff(coeff);
self.update_instant(clocksource.last_instant(), clocksource.last_cycles());
let (last_instant, last_cycles) = clocksource.last_record();
self.update_high_res_instant(last_instant, last_cycles);
self.update_coarse_res_instant(last_instant);
}
fn set_clock_mode(&mut self, mode: VdsoClockMode) {
@ -129,21 +151,20 @@ impl VdsoData {
self.shift = coeff.shift();
}
fn update_clock_instant(&mut self, clockid: usize, secs: u64, nanos_lshift: u64) {
fn update_clock_instant(&mut self, clockid: usize, secs: u64, nanos_info: u64) {
self.basetime[clockid].secs = secs;
self.basetime[clockid].nanos_lshift = nanos_lshift;
self.basetime[clockid].nanos_info = nanos_info;
}
fn update_instant(&mut self, instant: Instant, instant_cycles: u64) {
fn update_high_res_instant(&mut self, instant: Instant, instant_cycles: u64) {
self.last_cycles = instant_cycles;
const REALTIME_IDS: [ClockID; 2] =
[ClockID::CLOCK_REALTIME, ClockID::CLOCK_REALTIME_COARSE];
for clock_id in ALL_SUPPORTED_CLOCK_IDS {
let secs = if REALTIME_IDS.contains(&clock_id) {
for clock_id in HIGH_RES_CLOCK_IDS {
let secs = if clock_id == ClockID::CLOCK_REALTIME {
instant.secs() + START_SECS_COUNT.get().unwrap()
} else {
instant.secs()
};
self.update_clock_instant(
clock_id as usize,
secs,
@ -151,31 +172,48 @@ impl VdsoData {
);
}
}
fn update_coarse_res_instant(&mut self, instant: Instant) {
for clock_id in COARSE_RES_CLOCK_IDS {
let secs = if clock_id == ClockID::CLOCK_REALTIME_COARSE {
instant.secs() + START_SECS_COUNT.get().unwrap()
} else {
instant.secs()
};
self.update_clock_instant(clock_id as usize, secs, instant.nanos() as u64);
}
}
}
/// Vdso (virtual dynamic shared object) is used to export some safe kernel space routines to user space applications
/// so that applications can call these kernel space routines in-process, without context switching.
///
/// Vdso maintains a `VdsoData` instance that contains data information required for vdso mechanism,
/// and a `Vmo` that contains all vdso-related information, including the vdso data and the vdso calling interfaces.
/// Vdso maintains a `VdsoData` instance that contains data information required for VDSO mechanism,
/// and a `Vmo` that contains all VDSO-related information, including the VDSO data and the VDSO calling interfaces.
/// This `Vmo` must be mapped to every userspace process.
struct Vdso {
/// A VdsoData instance.
data: Mutex<VdsoData>,
/// the vmo of the entire vdso, including the library text and the vdso data.
data: SpinLock<VdsoData>,
/// The vmo of the entire VDSO, including the library text and the VDSO data.
vmo: Arc<Vmo>,
/// The `VmFrame` that contains the VDSO data. This frame is contained in and
/// will not be removed from the VDSO vmo.
data_frame: VmFrame,
}
/// A `SpinLock` for the `seq` field in `VdsoData`.
static SEQ_LOCK: SpinLock<()> = SpinLock::new(());
impl Vdso {
/// Construct a new Vdso, including an initialized `VdsoData` and a vmo of the vdso.
/// Construct a new Vdso, including an initialized `VdsoData` and a vmo of the VDSO.
fn new() -> Self {
let mut vdso_data = VdsoData::empty();
vdso_data.init();
let vdso_vmo = {
let (vdso_vmo, data_frame) = {
let vmo_options = VmoOptions::<Rights>::new(5 * PAGE_SIZE);
let vdso_vmo = vmo_options.alloc().unwrap();
// Write vdso data to vdso vmo.
// Write VDSO data to VDSO vmo.
vdso_vmo.write_bytes(0x80, vdso_data.as_bytes()).unwrap();
let vdso_lib_vmo = {
@ -186,62 +224,87 @@ impl Vdso {
};
let mut vdso_text = Box::new([0u8; PAGE_SIZE]);
vdso_lib_vmo.read_bytes(0, &mut *vdso_text).unwrap();
// Write vdso library to vdso vmo.
// Write VDSO library to VDSO vmo.
vdso_vmo.write_bytes(0x4000, &*vdso_text).unwrap();
vdso_vmo
let data_frame = vdso_vmo.get_committed_frame(0, true).unwrap();
(vdso_vmo, data_frame)
};
Self {
data: Mutex::new(vdso_data),
data: SpinLock::new(vdso_data),
vmo: Arc::new(vdso_vmo),
data_frame,
}
}
/// Return the vdso vmo.
fn vmo(&self) -> Arc<Vmo> {
self.vmo.clone()
}
fn update_instant(&self, instant: Instant, instant_cycles: u64) {
self.data.lock().update_instant(instant, instant_cycles);
fn update_high_res_instant(&self, instant: Instant, instant_cycles: u64) {
let seq_lock = SEQ_LOCK.lock();
self.data
.lock()
.update_high_res_instant(instant, instant_cycles);
// Update begins.
self.vmo.write_val(0x80, &1).unwrap();
self.vmo.write_val(0x88, &instant_cycles).unwrap();
for clock_id in ALL_SUPPORTED_CLOCK_IDS {
self.update_vmo_instant(clock_id);
self.data_frame.write_val(0x80, &1).unwrap();
self.data_frame.write_val(0x88, &instant_cycles).unwrap();
for clock_id in HIGH_RES_CLOCK_IDS {
self.update_data_frame_instant(clock_id);
}
// Update finishes.
self.vmo.write_val(0x80, &0).unwrap();
self.data_frame.write_val(0x80, &0).unwrap();
}
/// Update the requisite fields of the vdso data in the vmo.
fn update_vmo_instant(&self, clockid: ClockID) {
fn update_coarse_res_instant(&self, instant: Instant) {
let seq_lock = SEQ_LOCK.lock();
self.data.lock().update_coarse_res_instant(instant);
// Update begins.
self.data_frame.write_val(0x80, &1).unwrap();
for clock_id in COARSE_RES_CLOCK_IDS {
self.update_data_frame_instant(clock_id);
}
// Update finishes.
self.data_frame.write_val(0x80, &0).unwrap();
}
/// Update the requisite fields of the VDSO data in the `data_frame`.
fn update_data_frame_instant(&self, clockid: ClockID) {
let clock_index = clockid as usize;
let secs_offset = 0xA0 + clock_index * 0x10;
let nanos_lshift_offset = 0xA8 + clock_index * 0x10;
let nanos_info_offset = 0xA8 + clock_index * 0x10;
let data = self.data.lock();
self.vmo
self.data_frame
.write_val(secs_offset, &data.basetime[clock_index].secs)
.unwrap();
self.vmo
.write_val(
nanos_lshift_offset,
&data.basetime[clock_index].nanos_lshift,
)
self.data_frame
.write_val(nanos_info_offset, &data.basetime[clock_index].nanos_info)
.unwrap();
}
}
/// Update the `VdsoInstant` in Vdso.
fn update_vdso_instant(instant: Instant, instant_cycles: u64) {
VDSO.get().unwrap().update_instant(instant, instant_cycles);
/// Update the `VdsoInstant` for clock IDs with high resolution in Vdso.
fn update_vdso_high_res_instant(instant: Instant, instant_cycles: u64) {
VDSO.get()
.unwrap()
.update_high_res_instant(instant, instant_cycles);
}
/// Update the `VdsoInstant` for clock IDs with coarse resolution in Vdso.
fn update_vdso_coarse_res_instant(timer: Arc<Timer>) {
let instant = Instant::from(read_monotonic_time());
VDSO.get().unwrap().update_coarse_res_instant(instant);
timer.set(Duration::from_millis(100));
}
/// Init `START_SECS_COUNT`, which is used to record the seconds passed since 1970-01-01 00:00:00.
fn init_start_secs_count() {
let now = SystemTime::now();
let time_duration = now.duration_since(&SystemTime::UNIX_EPOCH).unwrap();
let time_duration = START_TIME
.get()
.unwrap()
.duration_since(&SystemTime::UNIX_EPOCH)
.unwrap();
START_SECS_COUNT.call_once(|| time_duration.as_secs());
}
@ -250,15 +313,20 @@ fn init_vdso() {
VDSO.call_once(|| Arc::new(vdso));
}
/// Init vdso module.
/// Init this module.
pub(super) fn init() {
init_start_secs_count();
init_vdso();
aster_time::VDSO_DATA_UPDATE.call_once(|| Arc::new(update_vdso_instant));
aster_time::VDSO_DATA_HIGH_RES_UPDATE_FN.call_once(|| Arc::new(update_vdso_high_res_instant));
// Coarse resolution clock IDs directly read the instant stored in VDSO data without
// using coefficients for calculation, thus the related instant requires more frequent updating.
let coarse_instant_timer = Timer::new(update_vdso_coarse_res_instant).unwrap();
coarse_instant_timer.set(Duration::from_millis(100));
}
/// Return the vdso vmo.
/// Return the VDSO vmo.
pub(crate) fn vdso_vmo() -> Option<Arc<Vmo>> {
// We allow that vdso does not exist
VDSO.get().map(|vdso| vdso.vmo())
// We allow that VDSO does not exist
VDSO.get().map(|vdso| vdso.vmo.clone())
}

View File

@ -1,16 +1,19 @@
// SPDX-License-Identifier: MPL-2.0
//! This module provides abstractions for hardware-assisted timing mechanisms, encapsulated by the `ClockSource` struct.
//! A `ClockSource` can be constructed from any counter with a stable frequency, enabling precise time measurements to be taken
//! by retrieving instances of `Instant`.
//! This module provides abstractions for hardware-assisted timing mechanisms, encapsulated
//! by the `ClockSource` struct.
//!
//! The `ClockSource` module is a fundamental building block for timing in systems that require high precision and accuracy.
//! It can be integrated into larger systems to provide timing capabilities, or used standalone for time tracking and elapsed time measurements.
//! A `ClockSource` can be constructed from any counter with a stable frequency, enabling precise
//! time measurements to be taken by retrieving instances of `Instant`.
//!
//! The `ClockSource` module is a fundamental building block for timing in systems that require
//! high precision and accuracy. It can be integrated into larger systems to provide timing capabilities,
//! or used standalone for time tracking and elapsed time measurements.
use alloc::sync::Arc;
use core::{cmp::max, ops::Add, time::Duration};
use aster_frame::sync::SpinLock;
use aster_frame::sync::RwLock;
use aster_util::coeff::Coeff;
use crate::NANOS_PER_SECOND;
@ -20,15 +23,21 @@ use crate::NANOS_PER_SECOND;
/// Users are able to measure time by retrieving `Instant` from this source.
///
/// # Implementation
/// The `ClockSource` relies on obtaining the frequency of the counter and the method for reading the cycles in order to measure time.
/// The `ClockSource` relies on obtaining the frequency of the counter and the method for
/// reading the cycles in order to measure time.
///
/// The **cycles** here refer the counts of the base time counter.
/// Additionally, the `ClockSource` also holds a last recorded instant, which acts as a reference point for subsequent time retrieval.
/// To prevent numerical overflow during the calculation of `Instant`, this last recorded instant **must be periodically refreshed**.
/// The maximum interval for these updates must be determined at the time of the `ClockSource` initialization.
///
/// Additionally, the `ClockSource` also holds a last record for an `Instant` and the
/// corresponding cycles, which acts as a reference point for subsequent time retrieval.
/// To prevent numerical overflow during the calculation of `Instant`, this last recorded instant
/// **must be periodically refreshed**. The maximum interval for these updates must be determined
/// at the time of the `ClockSource` initialization.
///
/// # Examples
/// Suppose we have a counter called `counter` which have the frequency `counter.freq`, and the method to read its cycles called `read_counter()`.
/// We can create a corresponding `ClockSource` and use it as follows:
/// Suppose we have a counter called `counter` which have the frequency `counter.freq`, and the method
/// to read its cycles called `read_counter()`. We can create a corresponding `ClockSource` and
/// use it as follows:
///
/// ```rust
/// // here we set the max_delay_secs = 10
@ -45,16 +54,17 @@ pub struct ClockSource {
read_cycles: Arc<dyn Fn() -> u64 + Sync + Send>,
base: ClockSourceBase,
coeff: Coeff,
last_instant: SpinLock<Instant>,
last_cycles: SpinLock<u64>,
/// A record to an `Instant` and the corresponding cycles of this `ClockSource`.
last_record: RwLock<(Instant, u64)>,
}
impl ClockSource {
/// Create a new `ClockSource` instance.
/// Require basic information of based time counter, including the function for reading cycles, the frequency
/// and the maximum delay seconds to update this `ClockSource`.
/// The `ClockSource` also calculates a reliable `Coeff` based on the counter's frequency and the maximum delay seconds.
/// This `Coeff` is used to convert the number of cycles into the duration of time that has passed for those cycles.
/// Require basic information of based time counter, including the function for reading cycles,
/// the frequency and the maximum delay seconds to update this `ClockSource`.
/// The `ClockSource` also calculates a reliable `Coeff` based on the counter's frequency and
/// the maximum delay seconds. This `Coeff` is used to convert the number of cycles into
/// the duration of time that has passed for those cycles.
pub fn new(
freq: u64,
max_delay_secs: u64,
@ -68,8 +78,7 @@ impl ClockSource {
read_cycles,
base,
coeff,
last_instant: SpinLock::new(Instant::zero()),
last_cycles: SpinLock::new(0),
last_record: RwLock::new((Instant::zero(), 0)),
}
}
@ -78,25 +87,23 @@ impl ClockSource {
}
/// Use the instant cycles to calculate the instant.
/// It first calculates the difference between the instant cycles and the last recorded cycles stored in the clocksource.
/// Then `ClockSource` will convert the passed cycles into passed time and calculate the current instant.
///
/// It first calculates the difference between the instant cycles and the last
/// recorded cycles stored in the clocksource. Then `ClockSource` will convert
/// the passed cycles into passed time and calculate the current instant.
fn calculate_instant(&self, instant_cycles: u64) -> Instant {
let (last_instant, last_cycles) = *self.last_record.read_irq_disabled();
let delta_nanos = {
let delta_cycles = instant_cycles - self.last_cycles();
let delta_cycles = instant_cycles - last_cycles;
self.cycles_to_nanos(delta_cycles)
};
let duration = Duration::from_nanos(delta_nanos);
self.last_instant() + duration
last_instant + duration
}
/// Use an input instant to update the internal instant in the `ClockSource`.
fn update_last_instant(&self, instant: &Instant) {
*self.last_instant.lock() = *instant;
}
/// Use an input cycles to update the internal instant in the `ClockSource`.
fn update_last_cycles(&self, cycles: u64) {
*self.last_cycles.lock() = cycles;
/// Use an input instant and cycles to update the `last_record` in the `ClockSource`.
fn update_last_record(&self, record: (Instant, u64)) {
*self.last_record.write_irq_disabled() = record;
}
/// read current cycles of the `ClockSource`.
@ -104,19 +111,14 @@ impl ClockSource {
(self.read_cycles)()
}
/// Return the last instant recorded in the `ClockSource`.
pub fn last_instant(&self) -> Instant {
return *self.last_instant.lock();
}
/// Return the last cycles recorded in the `ClockSource`.
pub fn last_cycles(&self) -> u64 {
return *self.last_cycles.lock();
/// Return the last instant and last cycles recorded in the `ClockSource`.
pub fn last_record(&self) -> (Instant, u64) {
return *self.last_record.read_irq_disabled();
}
/// Return the maximum delay seconds for updating of the `ClockSource`.
pub fn max_delay_secs(&self) -> u64 {
self.base.max_delay_secs()
self.base.max_delay_secs
}
/// Return the reference to the generated cycles coeff of the `ClockSource`.
@ -126,26 +128,24 @@ impl ClockSource {
/// Return the frequency of the counter used in the `ClockSource`.
pub fn freq(&self) -> u64 {
self.base.freq()
self.base.freq
}
/// Calibrate the recorded `Instant` to zero, and record the instant cycles.
pub(crate) fn calibrate(&self, instant_cycles: u64) {
self.update_last_cycles(instant_cycles);
self.update_last_instant(&Instant::zero());
self.update_last_record((Instant::zero(), instant_cycles));
}
/// Get the instant to update the internal instant in the `ClockSource`.
pub(crate) fn update(&self) {
let instant_cycles = self.read_cycles();
let instant = self.calculate_instant(instant_cycles);
self.update_last_cycles(instant_cycles);
self.update_last_instant(&instant);
self.update_last_record((instant, instant_cycles));
}
/// Read the instant corresponding to the current time.
/// When trying to read an instant from the clocksource, it will use the reading method to read instant cycles.
/// Then leverage it to calculate the instant.
/// When trying to read an instant from the clocksource, it will use the reading method
/// to read instant cycles. Then leverage it to calculate the instant.
pub(crate) fn read_instant(&self) -> Instant {
let instant_cycles = self.read_cycles();
self.calculate_instant(instant_cycles)
@ -162,10 +162,12 @@ pub struct Instant {
}
impl Instant {
/// Create a zeroed `Instant`.
pub const fn zero() -> Self {
Self { secs: 0, nanos: 0 }
}
/// Create an new `Instant` based on the inputting `secs` and `nanos`.
pub fn new(secs: u64, nanos: u32) -> Self {
Self { secs, nanos }
}
@ -181,6 +183,15 @@ impl Instant {
}
}
impl From<Duration> for Instant {
fn from(value: Duration) -> Self {
Self {
secs: value.as_secs(),
nanos: value.subsec_nanos(),
}
}
}
impl Add<Duration> for Instant {
type Output = Instant;
@ -210,12 +221,4 @@ impl ClockSourceBase {
max_delay_secs,
}
}
fn max_delay_secs(&self) -> u64 {
self.max_delay_secs
}
fn freq(&self) -> u64 {
self.freq
}
}

View File

@ -21,7 +21,8 @@ mod rtc;
mod tsc;
pub const NANOS_PER_SECOND: u32 = 1_000_000_000;
pub static VDSO_DATA_UPDATE: Once<Arc<dyn Fn(Instant, u64) + Sync + Send>> = Once::new();
pub static VDSO_DATA_HIGH_RES_UPDATE_FN: Once<Arc<dyn Fn(Instant, u64) + Sync + Send>> =
Once::new();
#[init_component]
fn time_init() -> Result<(), ComponentInitError> {

View File

@ -14,7 +14,7 @@ use spin::Once;
use crate::{
clocksource::{ClockSource, Instant},
START_TIME, VDSO_DATA_UPDATE,
START_TIME, VDSO_DATA_HIGH_RES_UPDATE_FN,
};
/// A instance of TSC clocksource.
@ -58,8 +58,9 @@ fn update_clocksource(timer: Arc<Timer>) {
clock.update();
// Update vdso data.
if VDSO_DATA_UPDATE.is_completed() {
VDSO_DATA_UPDATE.get().unwrap()(clock.last_instant(), clock.last_cycles());
if let Some(update_fn) = VDSO_DATA_HIGH_RES_UPDATE_FN.get() {
let (last_instant, last_cycles) = clock.last_record();
update_fn(last_instant, last_cycles);
}
// Setting the timer as `clock.max_delay_secs() - 1` is to avoid
// the actual delay time is greater than the maximum delay seconds due to the latency of execution.